Android恶意软件检测的异构特征空间

V. VarshaM., P. Vinod, A. DhanyaK.
{"title":"Android恶意软件检测的异构特征空间","authors":"V. VarshaM., P. Vinod, A. DhanyaK.","doi":"10.1109/IC3.2015.7346711","DOIUrl":null,"url":null,"abstract":"In this paper, a broad static analysis system to classify the android malware application is been proposed. The features like hardware components, permissions, application components, filtered intents, opcodes and number of smali files per application are used to generate the vector space model. Significant features are selected using Entropy based Category Coverage Difference criterion. The performance of the system was evaluated using classifiers like SVM, Rotation Forest and Random Forest. An accuracy of 98.14% with F-measure 0.976 was obtained for the Meta feature space model containing malware features using Random Forest classifier. An overall analysis concluded that the malware model outperforms benign model.","PeriodicalId":217950,"journal":{"name":"2015 Eighth International Conference on Contemporary Computing (IC3)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Heterogeneous feature space for Android malware detection\",\"authors\":\"V. VarshaM., P. Vinod, A. DhanyaK.\",\"doi\":\"10.1109/IC3.2015.7346711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a broad static analysis system to classify the android malware application is been proposed. The features like hardware components, permissions, application components, filtered intents, opcodes and number of smali files per application are used to generate the vector space model. Significant features are selected using Entropy based Category Coverage Difference criterion. The performance of the system was evaluated using classifiers like SVM, Rotation Forest and Random Forest. An accuracy of 98.14% with F-measure 0.976 was obtained for the Meta feature space model containing malware features using Random Forest classifier. An overall analysis concluded that the malware model outperforms benign model.\",\"PeriodicalId\":217950,\"journal\":{\"name\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Eighth International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2015.7346711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Eighth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2015.7346711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一个广义的静态分析系统,用于对android恶意软件应用进行分类。诸如硬件组件、权限、应用程序组件、过滤意图、操作码和每个应用程序的小文件数量等特性用于生成向量空间模型。使用基于熵的分类覆盖差准则选择显著特征。使用支持向量机、旋转森林和随机森林等分类器对系统的性能进行评估。使用随机森林分类器对包含恶意软件特征的Meta特征空间模型进行分类,准确率为98.14%,F-measure为0.976。综合分析得出结论,恶意软件模型优于良性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneous feature space for Android malware detection
In this paper, a broad static analysis system to classify the android malware application is been proposed. The features like hardware components, permissions, application components, filtered intents, opcodes and number of smali files per application are used to generate the vector space model. Significant features are selected using Entropy based Category Coverage Difference criterion. The performance of the system was evaluated using classifiers like SVM, Rotation Forest and Random Forest. An accuracy of 98.14% with F-measure 0.976 was obtained for the Meta feature space model containing malware features using Random Forest classifier. An overall analysis concluded that the malware model outperforms benign model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing security technique on generic database Pruned feature space for metamorphic malware detection using Markov Blanket Mitigation of desynchronization attack during inter-eNodeB handover key management in LTE Task behaviour inputs to a heterogeneous multiprocessor scheduler Hand written digit recognition system for South Indian languages using artificial neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1