提高空间任务软件异常频率估计的精度

A. Nikora, Galen Balcom
{"title":"提高空间任务软件异常频率估计的精度","authors":"A. Nikora, Galen Balcom","doi":"10.1109/SMC-IT.2009.55","DOIUrl":null,"url":null,"abstract":"Anomaly data can be used to estimate baseline values for operational mission software anomaly frequencies; these estimates can be used for future missions to determine whether software reliability is improving. The accuracy of anomaly frequency estimates can be affected by characteristics of the anomaly data and the problem reporting system maintaining that data. We have been using text mining and machine learning techniques to address one of these issues, in which the number of software-related anomalies is incorrectly reported because the problem reporting system does not tag them correctly. Results to date indicate that these techniques may substantially increase the accuracy of anomaly frequency estimates.","PeriodicalId":422009,"journal":{"name":"2009 Third IEEE International Conference on Space Mission Challenges for Information Technology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improving the Accuracy of Space Mission Software Anomaly Frequency Estimates\",\"authors\":\"A. Nikora, Galen Balcom\",\"doi\":\"10.1109/SMC-IT.2009.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anomaly data can be used to estimate baseline values for operational mission software anomaly frequencies; these estimates can be used for future missions to determine whether software reliability is improving. The accuracy of anomaly frequency estimates can be affected by characteristics of the anomaly data and the problem reporting system maintaining that data. We have been using text mining and machine learning techniques to address one of these issues, in which the number of software-related anomalies is incorrectly reported because the problem reporting system does not tag them correctly. Results to date indicate that these techniques may substantially increase the accuracy of anomaly frequency estimates.\",\"PeriodicalId\":422009,\"journal\":{\"name\":\"2009 Third IEEE International Conference on Space Mission Challenges for Information Technology\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Third IEEE International Conference on Space Mission Challenges for Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMC-IT.2009.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third IEEE International Conference on Space Mission Challenges for Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC-IT.2009.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

异常数据可用于估算操作任务软件异常频率的基线值;这些估计可以用于未来的任务,以确定软件可靠性是否正在提高。异常频率估计的准确性可能受到异常数据特征和维护该数据的问题报告系统的影响。我们一直在使用文本挖掘和机器学习技术来解决其中一个问题,其中与软件相关的异常的数量被错误地报告,因为问题报告系统没有正确地标记它们。迄今为止的结果表明,这些技术可以大大提高异常频率估计的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Accuracy of Space Mission Software Anomaly Frequency Estimates
Anomaly data can be used to estimate baseline values for operational mission software anomaly frequencies; these estimates can be used for future missions to determine whether software reliability is improving. The accuracy of anomaly frequency estimates can be affected by characteristics of the anomaly data and the problem reporting system maintaining that data. We have been using text mining and machine learning techniques to address one of these issues, in which the number of software-related anomalies is incorrectly reported because the problem reporting system does not tag them correctly. Results to date indicate that these techniques may substantially increase the accuracy of anomaly frequency estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Policy-Based Design of Human-Machine Collaboration in Manned Space Missions An Exploration of Tiled Architectures for Space Applications Reliable and Efficient Concurrent Synchronization for Embedded Real-Time Software Viewpoint-Based Test Analysis for Dependable Onboard Flight Software A Reusable Process Control System Framework for the Orbiting Carbon Observatory and NPP Sounder PEATE Missions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1