基于gpu的基于采样的运动规划碰撞检测

Jaeshik Yoon, Jae-Han Park, M. Baeg
{"title":"基于gpu的基于采样的运动规划碰撞检测","authors":"Jaeshik Yoon, Jae-Han Park, M. Baeg","doi":"10.1109/URAI.2013.6677345","DOIUrl":null,"url":null,"abstract":"This paper presents GPU-based collision detection method that accelerates collision queries for sampling-based motion planning. This approach uses many-core GPUs. To take advantage of a many-core GPU, kinematic and collision detection is calculated by the GPU. The experimental results indicate that this approach can result in a ten-fold faster performance than when using a CPU.","PeriodicalId":431699,"journal":{"name":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"GPU-based collision detection for sampling-based motion planning\",\"authors\":\"Jaeshik Yoon, Jae-Han Park, M. Baeg\",\"doi\":\"10.1109/URAI.2013.6677345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents GPU-based collision detection method that accelerates collision queries for sampling-based motion planning. This approach uses many-core GPUs. To take advantage of a many-core GPU, kinematic and collision detection is calculated by the GPU. The experimental results indicate that this approach can result in a ten-fold faster performance than when using a CPU.\",\"PeriodicalId\":431699,\"journal\":{\"name\":\"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2013.6677345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2013.6677345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于gpu的碰撞检测方法,该方法可以加速基于采样的运动规划中的碰撞查询。这种方法使用多核gpu。为了充分利用多核GPU的优势,运动检测和碰撞检测由GPU计算。实验结果表明,这种方法的性能比使用CPU时快十倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU-based collision detection for sampling-based motion planning
This paper presents GPU-based collision detection method that accelerates collision queries for sampling-based motion planning. This approach uses many-core GPUs. To take advantage of a many-core GPU, kinematic and collision detection is calculated by the GPU. The experimental results indicate that this approach can result in a ten-fold faster performance than when using a CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leader-follower formation control using infrared camera with reflective tag Optimal mission planning for underwater environment Mobile robot localization using indistinguishable artificial landmarks A study of collision avoidance between service robot and human at corner — Analysis of human behavior at corner Concept of variable transmission for tendon driven mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1