GCMDDBSCAN:基于网格和贡献的多密度DBSCAN

Linmeng Zhang, Zhigao Xu, Fengqi Si
{"title":"GCMDDBSCAN:基于网格和贡献的多密度DBSCAN","authors":"Linmeng Zhang, Zhigao Xu, Fengqi Si","doi":"10.1109/DASC.2013.115","DOIUrl":null,"url":null,"abstract":"Multi Density DBSCAN (Density Based Spatial Clustering of Application with Noise) is an excellent density-based clustering algorithm, which extends DBSCAN algorithm so as to be able to discover the different densities clusters, and retains the advantage of separating noise and finding arbitrary shape clusters. But, because of great memory demand and low calculation efficiency, Multi Density DBSCAN can't deal with large database. Therefore, GCMDDBSCAN is proposed in this paper, and within it 'migration-coefficient' conception is introduced firstly. In GCMDDBSCAN, with the grid technique, the optimization effect of contribution and migration-coefficient, and the efficient SP-tree query index, the runtime is reduced a lot, and the capability of clustering large database is obviously enhanced, at the same time, the accuracy of clustering result is not degraded.","PeriodicalId":179557,"journal":{"name":"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"GCMDDBSCAN: Multi-density DBSCAN Based on Grid and Contribution\",\"authors\":\"Linmeng Zhang, Zhigao Xu, Fengqi Si\",\"doi\":\"10.1109/DASC.2013.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi Density DBSCAN (Density Based Spatial Clustering of Application with Noise) is an excellent density-based clustering algorithm, which extends DBSCAN algorithm so as to be able to discover the different densities clusters, and retains the advantage of separating noise and finding arbitrary shape clusters. But, because of great memory demand and low calculation efficiency, Multi Density DBSCAN can't deal with large database. Therefore, GCMDDBSCAN is proposed in this paper, and within it 'migration-coefficient' conception is introduced firstly. In GCMDDBSCAN, with the grid technique, the optimization effect of contribution and migration-coefficient, and the efficient SP-tree query index, the runtime is reduced a lot, and the capability of clustering large database is obviously enhanced, at the same time, the accuracy of clustering result is not degraded.\",\"PeriodicalId\":179557,\"journal\":{\"name\":\"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2013.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2013.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

Multi Density DBSCAN (Density Based Spatial Clustering of Application with Noise)是一种优秀的基于密度的聚类算法,它对DBSCAN算法进行了扩展,可以发现不同密度的聚类,同时保留了分离噪声和发现任意形状聚类的优点。但是,由于内存需求大和计算效率低,Multi - Density DBSCAN无法处理大型数据库。因此,本文提出了GCMDDBSCAN,并在其中首先引入了“迁移系数”的概念。在GCMDDBSCAN中,利用网格技术、贡献系数和迁移系数的优化效果以及高效的sp树查询索引,大大减少了运行时间,明显增强了大型数据库的聚类能力,同时不降低聚类结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GCMDDBSCAN: Multi-density DBSCAN Based on Grid and Contribution
Multi Density DBSCAN (Density Based Spatial Clustering of Application with Noise) is an excellent density-based clustering algorithm, which extends DBSCAN algorithm so as to be able to discover the different densities clusters, and retains the advantage of separating noise and finding arbitrary shape clusters. But, because of great memory demand and low calculation efficiency, Multi Density DBSCAN can't deal with large database. Therefore, GCMDDBSCAN is proposed in this paper, and within it 'migration-coefficient' conception is introduced firstly. In GCMDDBSCAN, with the grid technique, the optimization effect of contribution and migration-coefficient, and the efficient SP-tree query index, the runtime is reduced a lot, and the capability of clustering large database is obviously enhanced, at the same time, the accuracy of clustering result is not degraded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Algorithm for Dynamic Cognitive Extraction Based on Fuzzy Rough Set An Improved Search Algorithm Based on Path Compression for Complex Network Dynamic Spectrum Sensing for Energy Harvesting Wireless Sensor Study and Application of Dynamic Collocation of Variable Weights Combination Forecasting Model A Multicast Routing Algorithm for GEO/LEO Satellite IP Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1