基于svm的体内传播信号生物特征认证

I. Nakanishi, Yuuta Sodani
{"title":"基于svm的体内传播信号生物特征认证","authors":"I. Nakanishi, Yuuta Sodani","doi":"10.1109/AVSS.2010.12","DOIUrl":null,"url":null,"abstract":"To use intra-body propagation signals for biometric authenticationhave been proposed. The intra-body propagationsignals are hid in human bodies; therefore, they havetolerability to circumvention using artifacts. Additionally,utilizing the signals in the body enables liveness detectionwith no additional scheme. The problem is, however, verificationperformance using the intra-body propagation signalis not so high. In this paper, in order to improve the performancewe propose to use user-specific frequency bandsfor all users in verification. The verification performance isimproved to 70 %. Furthermore, we introduce the supportvector machine (SVM) into the verification process. It isconfirmed that verification rate of about 86 % is achieved.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"SVM-Based Biometric Authentication Using Intra-Body Propagation Signals\",\"authors\":\"I. Nakanishi, Yuuta Sodani\",\"doi\":\"10.1109/AVSS.2010.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To use intra-body propagation signals for biometric authenticationhave been proposed. The intra-body propagationsignals are hid in human bodies; therefore, they havetolerability to circumvention using artifacts. Additionally,utilizing the signals in the body enables liveness detectionwith no additional scheme. The problem is, however, verificationperformance using the intra-body propagation signalis not so high. In this paper, in order to improve the performancewe propose to use user-specific frequency bandsfor all users in verification. The verification performance isimproved to 70 %. Furthermore, we introduce the supportvector machine (SVM) into the verification process. It isconfirmed that verification rate of about 86 % is achieved.\",\"PeriodicalId\":415758,\"journal\":{\"name\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2010.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了利用体内传播信号进行生物识别认证的方法。体内传播信号隐藏在人体内;因此,它们可以容忍使用工件进行规避。此外,利用体内的信号可以在没有额外方案的情况下进行活体检测。然而,问题是使用体内传播信号的验证性能不高。在本文中,为了提高性能,我们建议在验证中对所有用户使用用户特定的频段。验证性能提高到70%。此外,我们将支持向量机(SVM)引入到验证过程中。经证实,该系统的验证率约为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SVM-Based Biometric Authentication Using Intra-Body Propagation Signals
To use intra-body propagation signals for biometric authenticationhave been proposed. The intra-body propagationsignals are hid in human bodies; therefore, they havetolerability to circumvention using artifacts. Additionally,utilizing the signals in the body enables liveness detectionwith no additional scheme. The problem is, however, verificationperformance using the intra-body propagation signalis not so high. In this paper, in order to improve the performancewe propose to use user-specific frequency bandsfor all users in verification. The verification performance isimproved to 70 %. Furthermore, we introduce the supportvector machine (SVM) into the verification process. It isconfirmed that verification rate of about 86 % is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1