A. Gao, P. Dai, N. Lu, Tie Li, Yuelin Wang, S. Hemmila, P. Kallio
{"title":"微流控系统与硅纳米线生物传感器的集成多路检测","authors":"A. Gao, P. Dai, N. Lu, Tie Li, Yuelin Wang, S. Hemmila, P. Kallio","doi":"10.1109/3M-NANO.2013.6737444","DOIUrl":null,"url":null,"abstract":"This paper propose a novel method of integration microfluidic sample delivery system with silicon nanowire (SiNW) biosensor device, which provide multiplexed detection capability as well as protect the fragile sensing elements from mechanical shocks and surrounding impurities. The SiNWs and PDMS chips were fabricated with complementary metal oxide semiconductor (CMOS) compatibility and low cost methods. They were integrated together by using optimal O2 plasma parameters that enabled rapid and leakage-free bond formation, without additional heating or applied pressure. Capillary action enabled by the hydrophilicity of the channels using polyvinylpyrrolidone (PVP) was also demonstrated to allow analyte solution delivery onto the sensor array directly, exclude the need of using external pumping devices.","PeriodicalId":120368,"journal":{"name":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Integration of microfluidic system with silicon nanowires biosensor for multiplexed detection\",\"authors\":\"A. Gao, P. Dai, N. Lu, Tie Li, Yuelin Wang, S. Hemmila, P. Kallio\",\"doi\":\"10.1109/3M-NANO.2013.6737444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper propose a novel method of integration microfluidic sample delivery system with silicon nanowire (SiNW) biosensor device, which provide multiplexed detection capability as well as protect the fragile sensing elements from mechanical shocks and surrounding impurities. The SiNWs and PDMS chips were fabricated with complementary metal oxide semiconductor (CMOS) compatibility and low cost methods. They were integrated together by using optimal O2 plasma parameters that enabled rapid and leakage-free bond formation, without additional heating or applied pressure. Capillary action enabled by the hydrophilicity of the channels using polyvinylpyrrolidone (PVP) was also demonstrated to allow analyte solution delivery onto the sensor array directly, exclude the need of using external pumping devices.\",\"PeriodicalId\":120368,\"journal\":{\"name\":\"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2013.6737444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2013.6737444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of microfluidic system with silicon nanowires biosensor for multiplexed detection
This paper propose a novel method of integration microfluidic sample delivery system with silicon nanowire (SiNW) biosensor device, which provide multiplexed detection capability as well as protect the fragile sensing elements from mechanical shocks and surrounding impurities. The SiNWs and PDMS chips were fabricated with complementary metal oxide semiconductor (CMOS) compatibility and low cost methods. They were integrated together by using optimal O2 plasma parameters that enabled rapid and leakage-free bond formation, without additional heating or applied pressure. Capillary action enabled by the hydrophilicity of the channels using polyvinylpyrrolidone (PVP) was also demonstrated to allow analyte solution delivery onto the sensor array directly, exclude the need of using external pumping devices.