联合空间和二维频率局域滤波器组

P. Tay, Yanjun Yan
{"title":"联合空间和二维频率局域滤波器组","authors":"P. Tay, Yanjun Yan","doi":"10.1109/SSIAI.2018.8470386","DOIUrl":null,"url":null,"abstract":"This paper proposes a conjointly space-frequency well localized separable 2D filters. The separable 2D filterbanks constitute a perfect or near perfect reconstruction system. The novel space-frequency localization measure to determine optimality is the product of a filter’s 2D variance in space and 2D frequency variance. The particle swarm optimization method is efficiently applied to determine perfect or near perfect reconstruction optimal 2D filterbanks.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjointly Space and 2D Frequency Localized Filterbanks\",\"authors\":\"P. Tay, Yanjun Yan\",\"doi\":\"10.1109/SSIAI.2018.8470386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a conjointly space-frequency well localized separable 2D filters. The separable 2D filterbanks constitute a perfect or near perfect reconstruction system. The novel space-frequency localization measure to determine optimality is the product of a filter’s 2D variance in space and 2D frequency variance. The particle swarm optimization method is efficiently applied to determine perfect or near perfect reconstruction optimal 2D filterbanks.\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种联合空频良定域二维可分离滤波器。可分离的二维滤波器组构成了一个完美或接近完美的重构系统。确定最优性的新型空频定位措施是滤波器在空间上的二维方差和二维频率方差的乘积。将粒子群优化方法有效地应用于确定完美或接近完美重建的最优二维滤波器组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conjointly Space and 2D Frequency Localized Filterbanks
This paper proposes a conjointly space-frequency well localized separable 2D filters. The separable 2D filterbanks constitute a perfect or near perfect reconstruction system. The novel space-frequency localization measure to determine optimality is the product of a filter’s 2D variance in space and 2D frequency variance. The particle swarm optimization method is efficiently applied to determine perfect or near perfect reconstruction optimal 2D filterbanks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Modularity and Randomness Measures : A Comparative Study Drive-Net: Convolutional Network for Driver Distraction Detection In-between and cross-frequency dependence-based summarization of resting-state fMRI data A Ground-Truth Fusion Method for Image Segmentation Evaluation Sleep Analysis Using Motion and Head Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1