微型水轮机DFIG的PI和PID控制器研究

Jibran Ullah Khan, I. Haseeb, Muhammad Nazeer
{"title":"微型水轮机DFIG的PI和PID控制器研究","authors":"Jibran Ullah Khan, I. Haseeb, Muhammad Nazeer","doi":"10.34259/ijew.21.808204216","DOIUrl":null,"url":null,"abstract":"— The power extracted from the water i-e hydropower is one of the clean and economical source for the generation of power. The flow of water does not remain constant throughout the year so we have to build large storage tanks i-e dams to store water for power generation. But building these large dams have limited this source of energy. Consequently, the trend is going to change by building small hydropower plants. There is no availability of storage of water for producing power then mostly small hydro power plants are built there which are also called as run off river plants. The flow of water vary throughout the year resulting in inconsistent generation of power.so there is a need of variable speed operation that can operate at different operating point to achieve maximum efficiency. So for varying speed operation the one of the famous operating system that is doubly fed induction generator can be used to achieve desired results. In this work the DFIG in a MHPP’s is studied, there steady state and dynamic models are discussed. The 3 phase voltages and currents are transformed into 2 phase for ease in calculation by using Clark and park transformation. Then doubly fed induction generator has to operate at the required references which are reactive power, active power and also for speed. And eventually the model of vector control of doubly fed induction generator is achieved. The main objective of developing the model of doubly fed induction generator is to manage the two powers (i-e reactive and active power). The whole simulation should be carried out in MATLAB/Simulink. In this model of doubly fed induction generator we are using two different type of controllers, i-e Proportional integral and Proportional Integral Derivative controllers, to check the efficiency of the model. The results which are then obtained such as the torque, speed, rotor current, voltages on the rotor side as well as Bus voltage, reactive power on the grid side obtained from the two controllers are then compared with each other to see that which controller is giving good efficiency. Therefore, in this research, a predictive controller is proposed to manage the powers i-e active and reactive, of a hydropower plant using doubly fed induction generator.","PeriodicalId":221480,"journal":{"name":"International journal of Engineering Works","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating PI & PID Controllers for DFIG Installed at Micro Hydro Turbine\",\"authors\":\"Jibran Ullah Khan, I. Haseeb, Muhammad Nazeer\",\"doi\":\"10.34259/ijew.21.808204216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— The power extracted from the water i-e hydropower is one of the clean and economical source for the generation of power. The flow of water does not remain constant throughout the year so we have to build large storage tanks i-e dams to store water for power generation. But building these large dams have limited this source of energy. Consequently, the trend is going to change by building small hydropower plants. There is no availability of storage of water for producing power then mostly small hydro power plants are built there which are also called as run off river plants. The flow of water vary throughout the year resulting in inconsistent generation of power.so there is a need of variable speed operation that can operate at different operating point to achieve maximum efficiency. So for varying speed operation the one of the famous operating system that is doubly fed induction generator can be used to achieve desired results. In this work the DFIG in a MHPP’s is studied, there steady state and dynamic models are discussed. The 3 phase voltages and currents are transformed into 2 phase for ease in calculation by using Clark and park transformation. Then doubly fed induction generator has to operate at the required references which are reactive power, active power and also for speed. And eventually the model of vector control of doubly fed induction generator is achieved. The main objective of developing the model of doubly fed induction generator is to manage the two powers (i-e reactive and active power). The whole simulation should be carried out in MATLAB/Simulink. In this model of doubly fed induction generator we are using two different type of controllers, i-e Proportional integral and Proportional Integral Derivative controllers, to check the efficiency of the model. The results which are then obtained such as the torque, speed, rotor current, voltages on the rotor side as well as Bus voltage, reactive power on the grid side obtained from the two controllers are then compared with each other to see that which controller is giving good efficiency. Therefore, in this research, a predictive controller is proposed to manage the powers i-e active and reactive, of a hydropower plant using doubly fed induction generator.\",\"PeriodicalId\":221480,\"journal\":{\"name\":\"International journal of Engineering Works\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of Engineering Works\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34259/ijew.21.808204216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of Engineering Works","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34259/ijew.21.808204216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

-从水中提取的电力-水力发电是清洁和经济的发电来源之一。水的流量并不是全年都保持不变的,所以我们不得不建造大型的蓄水池——大坝来储存发电用的水。但是建造这些大型水坝限制了这种能源的来源。因此,这一趋势将通过建设小型水力发电厂来改变。没有可用的水储存来发电,所以大多数小型水力发电厂都建在那里,也被称为径流河电厂。水的流量一年四季都在变化,导致发电不稳定。因此需要变速运行,可以在不同的工作点运行,以达到最大的效率。因此,对于变速运行,采用双馈感应发电机这一著名的操作系统可以达到理想的效果。本文研究了MHPP系统中的DFIG,讨论了稳态模型和动态模型。为了便于计算,采用Clark变换和park变换将3相电压和电流变换为2相。然后双馈感应发电机必须运行在所需的参考,这是无功功率,有功功率,也为速度。最后建立了双馈感应发电机的矢量控制模型。建立双馈异步发电机模型的主要目的是对两种功率(无功功率和有功功率)进行管理。整个仿真应在MATLAB/Simulink中进行。在双馈感应发电机模型中,我们使用了两种不同类型的控制器,即比例积分控制器和比例积分导数控制器来检验模型的有效性。然后将从两个控制器获得的转矩、转速、转子电流、转子侧电压以及母线电压、电网侧无功功率等结果进行比较,以确定哪个控制器的效率较高。因此,本研究提出一种预测控制器来管理双馈感应发电机水电厂的有功和无功功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating PI & PID Controllers for DFIG Installed at Micro Hydro Turbine
— The power extracted from the water i-e hydropower is one of the clean and economical source for the generation of power. The flow of water does not remain constant throughout the year so we have to build large storage tanks i-e dams to store water for power generation. But building these large dams have limited this source of energy. Consequently, the trend is going to change by building small hydropower plants. There is no availability of storage of water for producing power then mostly small hydro power plants are built there which are also called as run off river plants. The flow of water vary throughout the year resulting in inconsistent generation of power.so there is a need of variable speed operation that can operate at different operating point to achieve maximum efficiency. So for varying speed operation the one of the famous operating system that is doubly fed induction generator can be used to achieve desired results. In this work the DFIG in a MHPP’s is studied, there steady state and dynamic models are discussed. The 3 phase voltages and currents are transformed into 2 phase for ease in calculation by using Clark and park transformation. Then doubly fed induction generator has to operate at the required references which are reactive power, active power and also for speed. And eventually the model of vector control of doubly fed induction generator is achieved. The main objective of developing the model of doubly fed induction generator is to manage the two powers (i-e reactive and active power). The whole simulation should be carried out in MATLAB/Simulink. In this model of doubly fed induction generator we are using two different type of controllers, i-e Proportional integral and Proportional Integral Derivative controllers, to check the efficiency of the model. The results which are then obtained such as the torque, speed, rotor current, voltages on the rotor side as well as Bus voltage, reactive power on the grid side obtained from the two controllers are then compared with each other to see that which controller is giving good efficiency. Therefore, in this research, a predictive controller is proposed to manage the powers i-e active and reactive, of a hydropower plant using doubly fed induction generator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of the Impact of Cerium Addition on the Microstructure and Properties of Tin- Silver (Sn-3.5Ag) Solder Alloy Smart Irrigation System Using Data Analysis Efficient Computation of Correlated Random Ordinates of Multivariate Weibull Distribution Parametric Optimization of the Selig (S1223-il) Airfoil for Enhanced Performance of Vertical Axis Wind Turbines Using Computer Tomographic (CT) Images, A Rebust Hybrid Computer-Aided Deep Learning Framework for Lung Cancer Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1