{"title":"基于导向的几何精确梁简单滑动接触约束的结构保持算法","authors":"Jiawen Guo, P. Betsch, Yue Zhang","doi":"10.23967/WCCM-ECCOMAS.2020.322","DOIUrl":null,"url":null,"abstract":". Structure-preserving algorithms exhibit superior long-run numerical stability in nonlinear solid and elasto-multibody dynamics. This paper provides time integrators for large flexible dynamic systems combining the carrier-sliding contact pair between two beams. The time integrators maintain some of the structural characteristics, which include the momentum, energy, symplecity et al. In research of the beam modeling, the director-based geometrically exact beam formulation has been compared with the three-dimensional absolute nodal coordinate beam formulation, which is also widely used in dynamic modeling of slender structures. The sliding contact transition between adjacent elements on the sliding line has been finely considered to keep the continuity of the sliding contact. The structure-preserving method has been embedded into the numerical solvers for dynamic analysis. The advantage of the structure-preserving methods over the time-decaying methods on energy and momentum preserving properties has been demonstrated in the dynamic analysis for the flexible beams that undergo sliding contact.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structure-Preserving Algorithms for Simple Sliding Contact Constraint in Director-Based Geometric Exact Beam\",\"authors\":\"Jiawen Guo, P. Betsch, Yue Zhang\",\"doi\":\"10.23967/WCCM-ECCOMAS.2020.322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Structure-preserving algorithms exhibit superior long-run numerical stability in nonlinear solid and elasto-multibody dynamics. This paper provides time integrators for large flexible dynamic systems combining the carrier-sliding contact pair between two beams. The time integrators maintain some of the structural characteristics, which include the momentum, energy, symplecity et al. In research of the beam modeling, the director-based geometrically exact beam formulation has been compared with the three-dimensional absolute nodal coordinate beam formulation, which is also widely used in dynamic modeling of slender structures. The sliding contact transition between adjacent elements on the sliding line has been finely considered to keep the continuity of the sliding contact. The structure-preserving method has been embedded into the numerical solvers for dynamic analysis. The advantage of the structure-preserving methods over the time-decaying methods on energy and momentum preserving properties has been demonstrated in the dynamic analysis for the flexible beams that undergo sliding contact.\",\"PeriodicalId\":148883,\"journal\":{\"name\":\"14th WCCM-ECCOMAS Congress\",\"volume\":\"275 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th WCCM-ECCOMAS Congress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/WCCM-ECCOMAS.2020.322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th WCCM-ECCOMAS Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structure-Preserving Algorithms for Simple Sliding Contact Constraint in Director-Based Geometric Exact Beam
. Structure-preserving algorithms exhibit superior long-run numerical stability in nonlinear solid and elasto-multibody dynamics. This paper provides time integrators for large flexible dynamic systems combining the carrier-sliding contact pair between two beams. The time integrators maintain some of the structural characteristics, which include the momentum, energy, symplecity et al. In research of the beam modeling, the director-based geometrically exact beam formulation has been compared with the three-dimensional absolute nodal coordinate beam formulation, which is also widely used in dynamic modeling of slender structures. The sliding contact transition between adjacent elements on the sliding line has been finely considered to keep the continuity of the sliding contact. The structure-preserving method has been embedded into the numerical solvers for dynamic analysis. The advantage of the structure-preserving methods over the time-decaying methods on energy and momentum preserving properties has been demonstrated in the dynamic analysis for the flexible beams that undergo sliding contact.