一种双足机器人运动适应低环境的方法

K. Mikami, K. Ohnishi
{"title":"一种双足机器人运动适应低环境的方法","authors":"K. Mikami, K. Ohnishi","doi":"10.1109/AMC.2010.5464063","DOIUrl":null,"url":null,"abstract":"This paper describes adapting motion of a biped robot. In some cases that biped robots walk in human environment, the robots encounter non-flat surfaces. To adapt to such environment, it is necessary to get environmental information by sensors. In this paper, the environmental information is transformed into useful structure, defined as “environmental modes”. The environmental modes consist of four modes; heaving, rolling, pitching, and twisting. By controlling biped robots, based on the environmental modes, they can adapt to non-flat surfaces. However, the environment with depressions is not considered in the conventional studies on controlling the environmental modes. Therefore, this research focuses on adapting motion to the depressed environment. A tip of the swing leg reached the bottom of depressions according to the heaving mode. The conventional study on controlling the environmental modes is introduced and extended in the proposed method. The experimental results showed the validity of the proposed method.","PeriodicalId":406900,"journal":{"name":"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method of adapting motion to depressed environment for biped robot\",\"authors\":\"K. Mikami, K. Ohnishi\",\"doi\":\"10.1109/AMC.2010.5464063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes adapting motion of a biped robot. In some cases that biped robots walk in human environment, the robots encounter non-flat surfaces. To adapt to such environment, it is necessary to get environmental information by sensors. In this paper, the environmental information is transformed into useful structure, defined as “environmental modes”. The environmental modes consist of four modes; heaving, rolling, pitching, and twisting. By controlling biped robots, based on the environmental modes, they can adapt to non-flat surfaces. However, the environment with depressions is not considered in the conventional studies on controlling the environmental modes. Therefore, this research focuses on adapting motion to the depressed environment. A tip of the swing leg reached the bottom of depressions according to the heaving mode. The conventional study on controlling the environmental modes is introduced and extended in the proposed method. The experimental results showed the validity of the proposed method.\",\"PeriodicalId\":406900,\"journal\":{\"name\":\"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2010.5464063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2010.5464063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种双足机器人的自适应运动。在某些情况下,双足机器人在人类环境中行走,机器人会遇到非平坦的表面。为了适应这样的环境,需要通过传感器获取环境信息。本文将环境信息转化为有用结构,定义为“环境模式”。环境模式包括四种模式;起伏、翻滚、俯仰和扭转。通过控制双足机器人,基于环境模式,使其能够适应非平坦的表面。然而,传统的环境模式控制研究并未考虑到洼地环境。因此,本研究的重点是使运动适应抑郁环境。根据起伏的模式,摆动腿的一端到达洼地的底部。本文介绍了传统的环境模态控制方法,并对其进行了扩展。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method of adapting motion to depressed environment for biped robot
This paper describes adapting motion of a biped robot. In some cases that biped robots walk in human environment, the robots encounter non-flat surfaces. To adapt to such environment, it is necessary to get environmental information by sensors. In this paper, the environmental information is transformed into useful structure, defined as “environmental modes”. The environmental modes consist of four modes; heaving, rolling, pitching, and twisting. By controlling biped robots, based on the environmental modes, they can adapt to non-flat surfaces. However, the environment with depressions is not considered in the conventional studies on controlling the environmental modes. Therefore, this research focuses on adapting motion to the depressed environment. A tip of the swing leg reached the bottom of depressions according to the heaving mode. The conventional study on controlling the environmental modes is introduced and extended in the proposed method. The experimental results showed the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental closed-form solution to globally consistent 2D range scan mapping with two-step pose estimation A proposal of feature extraction for impression analysis Advanced contouring error compensation in high performance motion control systems Smooth touch and force control to unknown environment without force sensor for industrial robot A simplified structure for robustness enhancement of time-delay systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1