眼部生物识别的深度多类眼睛分割

Peter Rot, Ž. Emeršič, V. Štruc, P. Peer
{"title":"眼部生物识别的深度多类眼睛分割","authors":"Peter Rot, Ž. Emeršič, V. Štruc, P. Peer","doi":"10.1109/IWOBI.2018.8464133","DOIUrl":null,"url":null,"abstract":"Segmentation techniques for ocular biometrics typically focus on finding a single eye region in the input image at the time. Only limited work has been done on multi-class eye segmentation despite a number of obvious advantages. In this paper we address this gap and present a deep multi-class eye segmentation model build around the SegNet architecture. We train the model on a small dataset (of 120 samples) of eye images and observe it to generalize well to unseen images and to ensure highly accurate segmentation results. We evaluate the model on the Multi-Angle Sclera Database (MASD) dataset and describe comprehensive experiments focusing on: i) segmentation performance, ii) error analysis, iii) the sensitivity of the model to changes in view direction, and iv) comparisons with competing single-class techniques. Our results show that the proposed model is viable solution for multi-class eye segmentation suitable for recognition (multi-biometric) pipelines based on ocular characteristics.","PeriodicalId":127078,"journal":{"name":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Deep Multi-class Eye Segmentation for Ocular Biometrics\",\"authors\":\"Peter Rot, Ž. Emeršič, V. Štruc, P. Peer\",\"doi\":\"10.1109/IWOBI.2018.8464133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation techniques for ocular biometrics typically focus on finding a single eye region in the input image at the time. Only limited work has been done on multi-class eye segmentation despite a number of obvious advantages. In this paper we address this gap and present a deep multi-class eye segmentation model build around the SegNet architecture. We train the model on a small dataset (of 120 samples) of eye images and observe it to generalize well to unseen images and to ensure highly accurate segmentation results. We evaluate the model on the Multi-Angle Sclera Database (MASD) dataset and describe comprehensive experiments focusing on: i) segmentation performance, ii) error analysis, iii) the sensitivity of the model to changes in view direction, and iv) comparisons with competing single-class techniques. Our results show that the proposed model is viable solution for multi-class eye segmentation suitable for recognition (multi-biometric) pipelines based on ocular characteristics.\",\"PeriodicalId\":127078,\"journal\":{\"name\":\"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWOBI.2018.8464133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2018.8464133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

眼部生物识别的分割技术通常侧重于在输入图像中找到单个眼睛区域。尽管多类别眼睛分割有许多明显的优势,但目前只做了有限的工作。在本文中,我们解决了这一差距,并提出了一个围绕SegNet架构构建的深度多类眼分割模型。我们在一个小的眼睛图像数据集(120个样本)上训练模型,并观察到它可以很好地推广到未见过的图像,并确保高度准确的分割结果。我们在多角度巩膜数据库(MASD)数据集上评估了该模型,并描述了综合实验,重点是:i)分割性能,ii)误差分析,iii)模型对视图方向变化的敏感性,以及iv)与竞争的单类技术的比较。结果表明,该模型适用于基于眼特征的多生物特征识别管道,是一种可行的多类眼分割解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Multi-class Eye Segmentation for Ocular Biometrics
Segmentation techniques for ocular biometrics typically focus on finding a single eye region in the input image at the time. Only limited work has been done on multi-class eye segmentation despite a number of obvious advantages. In this paper we address this gap and present a deep multi-class eye segmentation model build around the SegNet architecture. We train the model on a small dataset (of 120 samples) of eye images and observe it to generalize well to unseen images and to ensure highly accurate segmentation results. We evaluate the model on the Multi-Angle Sclera Database (MASD) dataset and describe comprehensive experiments focusing on: i) segmentation performance, ii) error analysis, iii) the sensitivity of the model to changes in view direction, and iv) comparisons with competing single-class techniques. Our results show that the proposed model is viable solution for multi-class eye segmentation suitable for recognition (multi-biometric) pipelines based on ocular characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart Placement of a Two-Arm Assembly for An Everyday Object Manipulation Humanoid Robot Based on Capability Maps Modules of Correlated Genes in a Gene Expression Regulatory Network of CDDP-Resistant Cancer Cells 2018 IEEE International Work Conference on Bioinspired Intelligence Parallelization of a Denoising Algorithm for Tonal Bioacoustic Signals Using OpenACC Directives Genome Copy Number Feature Selection Based on Chromosomal Regions Alterations and Chemosensitivity Subtypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1