美学指导下的渐进式图像增强

Xiaoyu Du, Xun Yang, Zhiguang Qin, Jinhui Tang
{"title":"美学指导下的渐进式图像增强","authors":"Xiaoyu Du, Xun Yang, Zhiguang Qin, Jinhui Tang","doi":"10.1145/3323873.3325055","DOIUrl":null,"url":null,"abstract":"Most existing image enhancement methods function like a black box, which cannot clearly reveal the procedure behind each image enhancement operation. To overcome this limitation, in this paper, we design a progressive image enhancement framework, which generates an expected \"good\" retouched image with a group of self-interpretable image filters under the guidance of an aesthetic assessment model. The introduced aesthetic network effectively alleviates the shortage of paired training samples by providing extra supervision, and eliminate the bias caused by human subjective preferences. The self-interpretable image filters designed in our image enhancement framework, make the overall image enhancing procedure easy-to-understand. Extensive experiments demonstrate the effectiveness of our proposed framework.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Progressive Image Enhancement under Aesthetic Guidance\",\"authors\":\"Xiaoyu Du, Xun Yang, Zhiguang Qin, Jinhui Tang\",\"doi\":\"10.1145/3323873.3325055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing image enhancement methods function like a black box, which cannot clearly reveal the procedure behind each image enhancement operation. To overcome this limitation, in this paper, we design a progressive image enhancement framework, which generates an expected \\\"good\\\" retouched image with a group of self-interpretable image filters under the guidance of an aesthetic assessment model. The introduced aesthetic network effectively alleviates the shortage of paired training samples by providing extra supervision, and eliminate the bias caused by human subjective preferences. The self-interpretable image filters designed in our image enhancement framework, make the overall image enhancing procedure easy-to-understand. Extensive experiments demonstrate the effectiveness of our proposed framework.\",\"PeriodicalId\":149041,\"journal\":{\"name\":\"Proceedings of the 2019 on International Conference on Multimedia Retrieval\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3323873.3325055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323873.3325055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

现有的大多数图像增强方法都像一个黑匣子,无法清楚地揭示每个图像增强操作背后的过程。为了克服这一局限性,本文设计了一种渐进式图像增强框架,在审美评估模型的指导下,使用一组自解释图像滤波器生成预期的“良好”修饰图像。引入的审美网络通过提供额外的监督,有效地缓解了成对训练样本不足的问题,消除了人类主观偏好带来的偏差。在我们的图像增强框架中设计了自解释的图像滤波器,使整个图像增强过程易于理解。大量的实验证明了我们提出的框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progressive Image Enhancement under Aesthetic Guidance
Most existing image enhancement methods function like a black box, which cannot clearly reveal the procedure behind each image enhancement operation. To overcome this limitation, in this paper, we design a progressive image enhancement framework, which generates an expected "good" retouched image with a group of self-interpretable image filters under the guidance of an aesthetic assessment model. The introduced aesthetic network effectively alleviates the shortage of paired training samples by providing extra supervision, and eliminate the bias caused by human subjective preferences. The self-interpretable image filters designed in our image enhancement framework, make the overall image enhancing procedure easy-to-understand. Extensive experiments demonstrate the effectiveness of our proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EAGER Multimodal Multimedia Retrieval with vitrivr RobustiQ: A Robust ANN Search Method for Billion-scale Similarity Search on GPUs Improving What Cross-Modal Retrieval Models Learn through Object-Oriented Inter- and Intra-Modal Attention Networks DeepMarks: A Secure Fingerprinting Framework for Digital Rights Management of Deep Learning Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1