基于采样数据控制理论的最优小波展开

K. Kashima, Y. Yamamoto, M. Nagahara
{"title":"基于采样数据控制理论的最优小波展开","authors":"K. Kashima, Y. Yamamoto, M. Nagahara","doi":"10.1109/CDC.2001.980964","DOIUrl":null,"url":null,"abstract":"Wavelet theory provides a new type of function expansion and and has found many applications in signal processing. The discrete wavelet transform of a signal x(t) in L/sup 2/(R) is usually computed by the so-called pyramid algorithm. It however requires a proper initialization, i.e., expansion coefficients with respect to the basis of one of the desirable approximation subspaces. An interesting question is how we can obtain such coefficients when only sampled values of x(t) are available. The paper provides a design method for a digital filter that optimally gives such coefficients assuming certain a priori knowledge on the frequency characteristic of the target functions. We then extend the result to the case of non-orthogonal wavelets. Examples show the effectiveness of the proposed method.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Optimal wavelet expansion via sampled-data control theory\",\"authors\":\"K. Kashima, Y. Yamamoto, M. Nagahara\",\"doi\":\"10.1109/CDC.2001.980964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelet theory provides a new type of function expansion and and has found many applications in signal processing. The discrete wavelet transform of a signal x(t) in L/sup 2/(R) is usually computed by the so-called pyramid algorithm. It however requires a proper initialization, i.e., expansion coefficients with respect to the basis of one of the desirable approximation subspaces. An interesting question is how we can obtain such coefficients when only sampled values of x(t) are available. The paper provides a design method for a digital filter that optimally gives such coefficients assuming certain a priori knowledge on the frequency characteristic of the target functions. We then extend the result to the case of non-orthogonal wavelets. Examples show the effectiveness of the proposed method.\",\"PeriodicalId\":131411,\"journal\":{\"name\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.980964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

小波理论提供了一种新的函数展开方法,在信号处理中得到了广泛的应用。L/sup 2/(R)中信号x(t)的离散小波变换通常由所谓的金字塔算法计算。然而,它需要一个适当的初始化,即,关于一个理想的近似子空间的基的展开系数。一个有趣的问题是,当只有x(t)的采样值可用时,我们如何获得这样的系数。本文提出了一种数字滤波器的设计方法,在已知目标函数的频率特性的前提下,最优地给出了这些系数。然后我们将结果推广到非正交小波的情况。算例表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal wavelet expansion via sampled-data control theory
Wavelet theory provides a new type of function expansion and and has found many applications in signal processing. The discrete wavelet transform of a signal x(t) in L/sup 2/(R) is usually computed by the so-called pyramid algorithm. It however requires a proper initialization, i.e., expansion coefficients with respect to the basis of one of the desirable approximation subspaces. An interesting question is how we can obtain such coefficients when only sampled values of x(t) are available. The paper provides a design method for a digital filter that optimally gives such coefficients assuming certain a priori knowledge on the frequency characteristic of the target functions. We then extend the result to the case of non-orthogonal wavelets. Examples show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear symmetry of nonlinear systems On-line predictive techniques for "differentiated services" networks The Lie algebra structure of spin systems and their controllability properties Time-delayed chaos control with repetitive learning Robust nonlinear motion control of a helicopter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1