人类行为识别的重点在哪里?

Srijan Das, Arpit Chaudhary, F. Brémond, M. Thonnat
{"title":"人类行为识别的重点在哪里?","authors":"Srijan Das, Arpit Chaudhary, F. Brémond, M. Thonnat","doi":"10.1109/WACV.2019.00015","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new attention model for the recognition of human action from RGB-D videos. We propose an attention mechanism based on 3D articulated pose. The objective is to focus on the most relevant body parts involved in the action. For action classification, we propose a classification network compounded of spatio-temporal subnetworks modeling the appearance of human body parts and RNN attention subnetwork implementing our attention mechanism. Furthermore, we train our proposed network end-to-end using a regularized cross-entropy loss, leading to a joint training of the RNN delivering attention globally to the whole set of spatio-temporal features, extracted from 3D ConvNets. Our method outperforms the State-of-the-art methods on the largest human activity recognition dataset available to-date (NTU RGB+D Dataset) which is also multi-views and on a human action recognition dataset with object interaction (Northwestern-UCLA Multiview Action 3D Dataset).","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Where to Focus on for Human Action Recognition?\",\"authors\":\"Srijan Das, Arpit Chaudhary, F. Brémond, M. Thonnat\",\"doi\":\"10.1109/WACV.2019.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new attention model for the recognition of human action from RGB-D videos. We propose an attention mechanism based on 3D articulated pose. The objective is to focus on the most relevant body parts involved in the action. For action classification, we propose a classification network compounded of spatio-temporal subnetworks modeling the appearance of human body parts and RNN attention subnetwork implementing our attention mechanism. Furthermore, we train our proposed network end-to-end using a regularized cross-entropy loss, leading to a joint training of the RNN delivering attention globally to the whole set of spatio-temporal features, extracted from 3D ConvNets. Our method outperforms the State-of-the-art methods on the largest human activity recognition dataset available to-date (NTU RGB+D Dataset) which is also multi-views and on a human action recognition dataset with object interaction (Northwestern-UCLA Multiview Action 3D Dataset).\",\"PeriodicalId\":436637,\"journal\":{\"name\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2019.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

在本文中,我们提出了一个新的注意力模型,用于从RGB-D视频中识别人类行为。我们提出了一种基于三维关节姿态的注意机制。目标是关注与动作相关的身体部位。对于动作分类,我们提出了一个由模拟人体部位外观的时空子网络和实现我们的注意机制的RNN注意子网络组成的分类网络。此外,我们使用正则化交叉熵损失对我们提出的网络进行端到端训练,导致RNN的联合训练,将注意力传递到从3D卷积神经网络中提取的整个时空特征集。我们的方法在迄今为止可用的最大的人类活动识别数据集(NTU RGB+D数据集)上优于最先进的方法,该数据集也是多视图的,并且在具有对象交互的人类动作识别数据集(西北加州大学洛杉矶分校多视图动作3D数据集)上优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Where to Focus on for Human Action Recognition?
In this paper, we present a new attention model for the recognition of human action from RGB-D videos. We propose an attention mechanism based on 3D articulated pose. The objective is to focus on the most relevant body parts involved in the action. For action classification, we propose a classification network compounded of spatio-temporal subnetworks modeling the appearance of human body parts and RNN attention subnetwork implementing our attention mechanism. Furthermore, we train our proposed network end-to-end using a regularized cross-entropy loss, leading to a joint training of the RNN delivering attention globally to the whole set of spatio-temporal features, extracted from 3D ConvNets. Our method outperforms the State-of-the-art methods on the largest human activity recognition dataset available to-date (NTU RGB+D Dataset) which is also multi-views and on a human action recognition dataset with object interaction (Northwestern-UCLA Multiview Action 3D Dataset).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ancient Painting to Natural Image: A New Solution for Painting Processing GAN-Based Pose-Aware Regulation for Video-Based Person Re-Identification Coupled Generative Adversarial Network for Continuous Fine-Grained Action Segmentation Dense 3D Point Cloud Reconstruction Using a Deep Pyramid Network 3D Reconstruction and Texture Optimization Using a Sparse Set of RGB-D Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1