基于控制Lyapunov-Barrier函数(CLBF)的移动机器人多路点导航

Ridlho Khoirul Fachri, M. Z. Romdlony, M. R. Rosa
{"title":"基于控制Lyapunov-Barrier函数(CLBF)的移动机器人多路点导航","authors":"Ridlho Khoirul Fachri, M. Z. Romdlony, M. R. Rosa","doi":"10.1109/CyberneticsCom55287.2022.9865390","DOIUrl":null,"url":null,"abstract":"We implemented the Control Lyapunov-Barrier Function (CLBF) method on the Autonomous Mobile Robot (AMR) hardware using the inverse kinematics of four mecanum wheels. The CLBF method is used to obtain stability and safety in the system. The stability of the system is defined when the AMR is able to reach the specified equilibrium point and the safety of the system is defined when the AMR is able to avoid the existing unsafe state. Waypoint navigation is used to provide several points of equilibrium so that the robot can move to the desired coordinate points. In this paper, we do not use a local sensor such as an encoder, but use a global sensor, namely a camera, to read the coordinates of the AMR position. We use a microcontroller to receive the coordinates of the $x$ and $y$ positions of the BLOB detection. The test was carried out three times with each time testing through three waypoints and one predetermined unsafe state. This study resulted in the percentage value of the implementation success of 76.47%, this value is the result of a comparison of the path generated by the simulation with Matlab and the path from the AMR real plant.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Waypoint Navigation for Mobile Robot Using Control Lyapunov-Barrier Function (CLBF)\",\"authors\":\"Ridlho Khoirul Fachri, M. Z. Romdlony, M. R. Rosa\",\"doi\":\"10.1109/CyberneticsCom55287.2022.9865390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We implemented the Control Lyapunov-Barrier Function (CLBF) method on the Autonomous Mobile Robot (AMR) hardware using the inverse kinematics of four mecanum wheels. The CLBF method is used to obtain stability and safety in the system. The stability of the system is defined when the AMR is able to reach the specified equilibrium point and the safety of the system is defined when the AMR is able to avoid the existing unsafe state. Waypoint navigation is used to provide several points of equilibrium so that the robot can move to the desired coordinate points. In this paper, we do not use a local sensor such as an encoder, but use a global sensor, namely a camera, to read the coordinates of the AMR position. We use a microcontroller to receive the coordinates of the $x$ and $y$ positions of the BLOB detection. The test was carried out three times with each time testing through three waypoints and one predetermined unsafe state. This study resulted in the percentage value of the implementation success of 76.47%, this value is the result of a comparison of the path generated by the simulation with Matlab and the path from the AMR real plant.\",\"PeriodicalId\":178279,\"journal\":{\"name\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberneticsCom55287.2022.9865390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用四个机械轮的逆运动学,在自主移动机器人(AMR)硬件上实现了控制Lyapunov-Barrier函数(CLBF)方法。采用CLBF方法获得系统的稳定性和安全性。当AMR能够达到指定的平衡点时,定义系统的稳定性;当AMR能够避免现有的不安全状态时,定义系统的安全性。路点导航用于提供几个平衡点,以便机器人可以移动到所需的坐标点。在本文中,我们不使用局部传感器(如编码器),而是使用全局传感器(即摄像机)来读取AMR位置的坐标。我们使用微控制器来接收BLOB检测的x和y位置的坐标。测试进行了三次,每次测试通过三个航路点和一个预定的不安全状态。本研究的实现成功率百分比值为76.47%,该值是将Matlab仿真生成的路径与AMR真实工厂的路径进行比较的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Waypoint Navigation for Mobile Robot Using Control Lyapunov-Barrier Function (CLBF)
We implemented the Control Lyapunov-Barrier Function (CLBF) method on the Autonomous Mobile Robot (AMR) hardware using the inverse kinematics of four mecanum wheels. The CLBF method is used to obtain stability and safety in the system. The stability of the system is defined when the AMR is able to reach the specified equilibrium point and the safety of the system is defined when the AMR is able to avoid the existing unsafe state. Waypoint navigation is used to provide several points of equilibrium so that the robot can move to the desired coordinate points. In this paper, we do not use a local sensor such as an encoder, but use a global sensor, namely a camera, to read the coordinates of the AMR position. We use a microcontroller to receive the coordinates of the $x$ and $y$ positions of the BLOB detection. The test was carried out three times with each time testing through three waypoints and one predetermined unsafe state. This study resulted in the percentage value of the implementation success of 76.47%, this value is the result of a comparison of the path generated by the simulation with Matlab and the path from the AMR real plant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Method of Electroencephalography Electrode Selection for Motor Imagery Application Aspect-based Sentiment Analysis for Improving Online Learning Program Based on Student Feedback Fuzzy Logic Control Strategy for Axial Flux Permanent Magnet Synchronous Generator in WHM 1.5KW Welcome Message from General Chair The 6th Cyberneticscom 2022 Performance Comparison of AODV, AODV-ETX and Modified AODV-ETX in VANET using NS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1