{"title":"一种利用合作导弹进行导弹防御的优化策略","authors":"M. Kapsis, Peter Pudney, W. Miller, G. Freebairn","doi":"10.36334/modsim.2023.kapsis100","DOIUrl":null,"url":null,"abstract":": This paper describes an optimal strategy for defending against an attacking missile with a team of cooperating defending missiles. The motivation is to allow us to compare a single high-cost defending missile to a team of low-cost defending missiles. The strategy predicts the possible paths of the attacking missile from a known initial state to a known target, then determines two regions: the region the attacking missile will be in when the defending missiles start seeking the attacking missile, and the region the attacking missile will be in when it can be intercepted. The selection of aim points that maximise the defending missile team’s coverage of these two regions can be formulated as a multi-dimensional unconstrained non-linear optimisation problem. The optimisation determines whether it is better to have thin coverage of the entire seek and intercept regions or concentrated coverage on parts of the seek and intercept regions to maximise the probability of stopping the attacking missile. In general, the more paths that each defending missile can see and hit, the greater the probability of stopping the attacking missile. The optimisation problem is solved using the Nelder-Mead method and an example is given to demonstrate the effectiveness of the method.","PeriodicalId":390064,"journal":{"name":"MODSIM2023, 25th International Congress on Modelling and Simulation.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An optimised strategy for using cooperating missiles for missile defence\",\"authors\":\"M. Kapsis, Peter Pudney, W. Miller, G. Freebairn\",\"doi\":\"10.36334/modsim.2023.kapsis100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper describes an optimal strategy for defending against an attacking missile with a team of cooperating defending missiles. The motivation is to allow us to compare a single high-cost defending missile to a team of low-cost defending missiles. The strategy predicts the possible paths of the attacking missile from a known initial state to a known target, then determines two regions: the region the attacking missile will be in when the defending missiles start seeking the attacking missile, and the region the attacking missile will be in when it can be intercepted. The selection of aim points that maximise the defending missile team’s coverage of these two regions can be formulated as a multi-dimensional unconstrained non-linear optimisation problem. The optimisation determines whether it is better to have thin coverage of the entire seek and intercept regions or concentrated coverage on parts of the seek and intercept regions to maximise the probability of stopping the attacking missile. In general, the more paths that each defending missile can see and hit, the greater the probability of stopping the attacking missile. The optimisation problem is solved using the Nelder-Mead method and an example is given to demonstrate the effectiveness of the method.\",\"PeriodicalId\":390064,\"journal\":{\"name\":\"MODSIM2023, 25th International Congress on Modelling and Simulation.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MODSIM2023, 25th International Congress on Modelling and Simulation.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36334/modsim.2023.kapsis100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MODSIM2023, 25th International Congress on Modelling and Simulation.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36334/modsim.2023.kapsis100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An optimised strategy for using cooperating missiles for missile defence
: This paper describes an optimal strategy for defending against an attacking missile with a team of cooperating defending missiles. The motivation is to allow us to compare a single high-cost defending missile to a team of low-cost defending missiles. The strategy predicts the possible paths of the attacking missile from a known initial state to a known target, then determines two regions: the region the attacking missile will be in when the defending missiles start seeking the attacking missile, and the region the attacking missile will be in when it can be intercepted. The selection of aim points that maximise the defending missile team’s coverage of these two regions can be formulated as a multi-dimensional unconstrained non-linear optimisation problem. The optimisation determines whether it is better to have thin coverage of the entire seek and intercept regions or concentrated coverage on parts of the seek and intercept regions to maximise the probability of stopping the attacking missile. In general, the more paths that each defending missile can see and hit, the greater the probability of stopping the attacking missile. The optimisation problem is solved using the Nelder-Mead method and an example is given to demonstrate the effectiveness of the method.