Raphael Dörich, Philipp G. Eger, J. Lelieveld, J. Crowley
{"title":"碘化物- cims和m/ z62:在PAN、过氧乙酸和O3存在下HNO3作为NO3−的检测","authors":"Raphael Dörich, Philipp G. Eger, J. Lelieveld, J. Crowley","doi":"10.5194/AMT-2021-57","DOIUrl":null,"url":null,"abstract":"Abstract. Chemical Ionisation Mass Spectrometry (CIMS) using I− (the iodide anion) as primary chemi-ion has previously been used to measure NO3 and N2O5 both in laboratory and field experiments. We show that reports of the large daytime mixing ratios of NO3 and N2O5 (usually only present in detectable amounts at night-time) are likely to be heavily biased by the ubiquitous presence of HNO3 in the troposphere and lower stratosphere. We demonstrate in a series of laboratory experiments that the CIMS detection of HNO3 at m/z 62 using I− ions is efficient in the presence of PAN or peracetic acid (PAA) and especially O3. We have characterised the dependence of the sensitivity to HNO3 detection on the presence of acetate anions (CH3CO2−, m/z 59, from either PAN or PAA). The loss of CH3CO2− via conversion to NO3− in the presence of HNO3 may represent a significant bias in I-CIMS measurements of PAN and CH3C(O)OOH. The largest sensitivity to HNO3 at m/z 62 is achieved in the presence of ambient levels of O3 whereby the thermodynamically disfavoured, direct reaction of I− with HNO3 to form NO3− is bypassed by the formation of IOX− which react with HNO3 to form e.g. iodic acid and NO3−. The ozone and humidity dependence of the detection of HNO3 at m/z 62 was characterised in laboratory experiments and applied to daytime, airborne measurements in which very good agreement with measurements of the I−(HNO3) cluster-ion (specific for HNO3 detection) was obtained.\n","PeriodicalId":441110,"journal":{"name":"Atmospheric Measurement Techniques Discussions","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Iodide-CIMS and m/z 62: The detection of HNO3 as NO3− in the presence of PAN, peracetic acid and O3\",\"authors\":\"Raphael Dörich, Philipp G. Eger, J. Lelieveld, J. Crowley\",\"doi\":\"10.5194/AMT-2021-57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Chemical Ionisation Mass Spectrometry (CIMS) using I− (the iodide anion) as primary chemi-ion has previously been used to measure NO3 and N2O5 both in laboratory and field experiments. We show that reports of the large daytime mixing ratios of NO3 and N2O5 (usually only present in detectable amounts at night-time) are likely to be heavily biased by the ubiquitous presence of HNO3 in the troposphere and lower stratosphere. We demonstrate in a series of laboratory experiments that the CIMS detection of HNO3 at m/z 62 using I− ions is efficient in the presence of PAN or peracetic acid (PAA) and especially O3. We have characterised the dependence of the sensitivity to HNO3 detection on the presence of acetate anions (CH3CO2−, m/z 59, from either PAN or PAA). The loss of CH3CO2− via conversion to NO3− in the presence of HNO3 may represent a significant bias in I-CIMS measurements of PAN and CH3C(O)OOH. The largest sensitivity to HNO3 at m/z 62 is achieved in the presence of ambient levels of O3 whereby the thermodynamically disfavoured, direct reaction of I− with HNO3 to form NO3− is bypassed by the formation of IOX− which react with HNO3 to form e.g. iodic acid and NO3−. The ozone and humidity dependence of the detection of HNO3 at m/z 62 was characterised in laboratory experiments and applied to daytime, airborne measurements in which very good agreement with measurements of the I−(HNO3) cluster-ion (specific for HNO3 detection) was obtained.\\n\",\"PeriodicalId\":441110,\"journal\":{\"name\":\"Atmospheric Measurement Techniques Discussions\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/AMT-2021-57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/AMT-2021-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iodide-CIMS and m/z 62: The detection of HNO3 as NO3− in the presence of PAN, peracetic acid and O3
Abstract. Chemical Ionisation Mass Spectrometry (CIMS) using I− (the iodide anion) as primary chemi-ion has previously been used to measure NO3 and N2O5 both in laboratory and field experiments. We show that reports of the large daytime mixing ratios of NO3 and N2O5 (usually only present in detectable amounts at night-time) are likely to be heavily biased by the ubiquitous presence of HNO3 in the troposphere and lower stratosphere. We demonstrate in a series of laboratory experiments that the CIMS detection of HNO3 at m/z 62 using I− ions is efficient in the presence of PAN or peracetic acid (PAA) and especially O3. We have characterised the dependence of the sensitivity to HNO3 detection on the presence of acetate anions (CH3CO2−, m/z 59, from either PAN or PAA). The loss of CH3CO2− via conversion to NO3− in the presence of HNO3 may represent a significant bias in I-CIMS measurements of PAN and CH3C(O)OOH. The largest sensitivity to HNO3 at m/z 62 is achieved in the presence of ambient levels of O3 whereby the thermodynamically disfavoured, direct reaction of I− with HNO3 to form NO3− is bypassed by the formation of IOX− which react with HNO3 to form e.g. iodic acid and NO3−. The ozone and humidity dependence of the detection of HNO3 at m/z 62 was characterised in laboratory experiments and applied to daytime, airborne measurements in which very good agreement with measurements of the I−(HNO3) cluster-ion (specific for HNO3 detection) was obtained.