社会人气得分:预测的意见,评论,和社会照片的收藏夹仅使用注释的数量

WISMM '14 Pub Date : 2014-10-02 DOI:10.1145/2661714.2661722
T. Yamasaki, Shumpei Sano, K. Aizawa
{"title":"社会人气得分:预测的意见,评论,和社会照片的收藏夹仅使用注释的数量","authors":"T. Yamasaki, Shumpei Sano, K. Aizawa","doi":"10.1145/2661714.2661722","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an algorithm to predict the social popularity (i.e., the numbers of views, comments, and favorites) of content on social networking services using only text annotations. Instead of analyzing image/video content, we try to estimate social popularity by a combination of weight vectors obtained from a support vector regression (SVR) and tag frequency. Since our proposed algorithm uses text annotations instead of image/video features, its computational cost is small. As a result, we can estimate social popularity more efficiently than previously proposed methods. Furthermore, tags that significantly affect social popularity can be extracted using our algorithm. Our experiments involved using one million photos on the social networking website Flickr, and the results showed a high correlation between actual social popularity and the determination thereof using our algorithm. Moreover, the proposed algorithm can achieve high classification accuracy with regard to a classification between popular and unpopular content.","PeriodicalId":365687,"journal":{"name":"WISMM '14","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Social Popularity Score: Predicting Numbers of Views, Comments, and Favorites of Social Photos Using Only Annotations\",\"authors\":\"T. Yamasaki, Shumpei Sano, K. Aizawa\",\"doi\":\"10.1145/2661714.2661722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an algorithm to predict the social popularity (i.e., the numbers of views, comments, and favorites) of content on social networking services using only text annotations. Instead of analyzing image/video content, we try to estimate social popularity by a combination of weight vectors obtained from a support vector regression (SVR) and tag frequency. Since our proposed algorithm uses text annotations instead of image/video features, its computational cost is small. As a result, we can estimate social popularity more efficiently than previously proposed methods. Furthermore, tags that significantly affect social popularity can be extracted using our algorithm. Our experiments involved using one million photos on the social networking website Flickr, and the results showed a high correlation between actual social popularity and the determination thereof using our algorithm. Moreover, the proposed algorithm can achieve high classification accuracy with regard to a classification between popular and unpopular content.\",\"PeriodicalId\":365687,\"journal\":{\"name\":\"WISMM '14\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WISMM '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2661714.2661722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WISMM '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661714.2661722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

在本文中,我们提出了一种仅使用文本注释来预测社交网络服务上内容的社会人气(即观看、评论和收藏的数量)的算法。我们不是分析图像/视频内容,而是尝试通过从支持向量回归(SVR)和标签频率获得的权重向量的组合来估计社会人气。由于我们提出的算法使用文本注释而不是图像/视频特征,因此计算成本小。因此,我们可以比以前提出的方法更有效地估计社会受欢迎程度。此外,可以使用我们的算法提取显著影响社会人气的标签。我们的实验使用了社交网站Flickr上的100万张照片,结果显示,实际的社交人气与使用我们的算法确定的人气之间存在高度相关性。此外,该算法在流行内容和不流行内容的分类方面可以达到较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Social Popularity Score: Predicting Numbers of Views, Comments, and Favorites of Social Photos Using Only Annotations
In this paper, we propose an algorithm to predict the social popularity (i.e., the numbers of views, comments, and favorites) of content on social networking services using only text annotations. Instead of analyzing image/video content, we try to estimate social popularity by a combination of weight vectors obtained from a support vector regression (SVR) and tag frequency. Since our proposed algorithm uses text annotations instead of image/video features, its computational cost is small. As a result, we can estimate social popularity more efficiently than previously proposed methods. Furthermore, tags that significantly affect social popularity can be extracted using our algorithm. Our experiments involved using one million photos on the social networking website Flickr, and the results showed a high correlation between actual social popularity and the determination thereof using our algorithm. Moreover, the proposed algorithm can achieve high classification accuracy with regard to a classification between popular and unpopular content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Aerial Image Categorization by Multi-Task Discriminative Topologies Discovery Empirical Observation of User Activities: Check-ins, Venue Photos and Tips in Foursquare Pushing Image Recognition in the Real World: Towards Recognizing Millions of Entities Towards Storytelling by Extracting Social Information from OSN Photo's Metadata Monitoring of User Generated Video Broadcasting Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1