{"title":"符号误码率与盲自适应均衡器获得的剩余码间干扰的函数关系","authors":"M. Pinchas","doi":"10.1155/2013/860389","DOIUrl":null,"url":null,"abstract":"A nonzero residual intersymbol interference (ISI) causes the symbol error rate (SER) to increase where the achievable SER may not answer any more on the system’s requirements. In the literature, we may find for the single-input-single-output (SISO) case a closed-form approximated expression for the SER that takes into account the achievable performance of the chosen blind adaptive equalizer from the residual ISI point of view and a closed-form approximated expression for the residual ISI valid for the single-input-multiple-output (SIMO) case. Both expressions were obtained by assuming that the input noise is a white Gaussian process where the Hurst exponent (H) is equal to 0.5. In this paper, we derive a closed-form approximated expression for the residual ISI obtained by blind adaptive equalizers for the SIMO case, valid for fractional Gaussian noise (fGn) input where the Hurst exponent is in the region of . Based on this new expression for the residual ISI, a closed-form approximated expression is obtained for the SER valid for the SIMO and fGn case. In this paper, we show via simulation results that the SER might get improved for increasing values of H.","PeriodicalId":298357,"journal":{"name":"International Conference on Pervasive and Embedded Computing and Communication Systems","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Symbol Error Rate as a Function of the Residual ISI Obtained by Blind Adaptive Equalizers\",\"authors\":\"M. Pinchas\",\"doi\":\"10.1155/2013/860389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonzero residual intersymbol interference (ISI) causes the symbol error rate (SER) to increase where the achievable SER may not answer any more on the system’s requirements. In the literature, we may find for the single-input-single-output (SISO) case a closed-form approximated expression for the SER that takes into account the achievable performance of the chosen blind adaptive equalizer from the residual ISI point of view and a closed-form approximated expression for the residual ISI valid for the single-input-multiple-output (SIMO) case. Both expressions were obtained by assuming that the input noise is a white Gaussian process where the Hurst exponent (H) is equal to 0.5. In this paper, we derive a closed-form approximated expression for the residual ISI obtained by blind adaptive equalizers for the SIMO case, valid for fractional Gaussian noise (fGn) input where the Hurst exponent is in the region of . Based on this new expression for the residual ISI, a closed-form approximated expression is obtained for the SER valid for the SIMO and fGn case. In this paper, we show via simulation results that the SER might get improved for increasing values of H.\",\"PeriodicalId\":298357,\"journal\":{\"name\":\"International Conference on Pervasive and Embedded Computing and Communication Systems\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pervasive and Embedded Computing and Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/860389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pervasive and Embedded Computing and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/860389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Symbol Error Rate as a Function of the Residual ISI Obtained by Blind Adaptive Equalizers
A nonzero residual intersymbol interference (ISI) causes the symbol error rate (SER) to increase where the achievable SER may not answer any more on the system’s requirements. In the literature, we may find for the single-input-single-output (SISO) case a closed-form approximated expression for the SER that takes into account the achievable performance of the chosen blind adaptive equalizer from the residual ISI point of view and a closed-form approximated expression for the residual ISI valid for the single-input-multiple-output (SIMO) case. Both expressions were obtained by assuming that the input noise is a white Gaussian process where the Hurst exponent (H) is equal to 0.5. In this paper, we derive a closed-form approximated expression for the residual ISI obtained by blind adaptive equalizers for the SIMO case, valid for fractional Gaussian noise (fGn) input where the Hurst exponent is in the region of . Based on this new expression for the residual ISI, a closed-form approximated expression is obtained for the SER valid for the SIMO and fGn case. In this paper, we show via simulation results that the SER might get improved for increasing values of H.