{"title":"基于gpu的深度学习应用性能预测","authors":"E. Gianniti, Li Zhang, D. Ardagna","doi":"10.1109/CAHPC.2018.8645908","DOIUrl":null,"url":null,"abstract":"Recent years saw an increasing success in the application of deep learning methods across various domains and for tackling different problems, ranging from image recognition and classification to text processing and speech recognition. In this paper we propose and validate an approach to model the execution time for training convolutional neural networks (CNNs) deployed on GPGPUs. We demonstrate that our approach is generally applicable to a variety of CNN models and different types of G PG PU s with high accuracy, aiming at the preliminary design phases for system sizing.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Performance Prediction of GPU-Based Deep Learning Applications\",\"authors\":\"E. Gianniti, Li Zhang, D. Ardagna\",\"doi\":\"10.1109/CAHPC.2018.8645908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years saw an increasing success in the application of deep learning methods across various domains and for tackling different problems, ranging from image recognition and classification to text processing and speech recognition. In this paper we propose and validate an approach to model the execution time for training convolutional neural networks (CNNs) deployed on GPGPUs. We demonstrate that our approach is generally applicable to a variety of CNN models and different types of G PG PU s with high accuracy, aiming at the preliminary design phases for system sizing.\",\"PeriodicalId\":307747,\"journal\":{\"name\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAHPC.2018.8645908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Prediction of GPU-Based Deep Learning Applications
Recent years saw an increasing success in the application of deep learning methods across various domains and for tackling different problems, ranging from image recognition and classification to text processing and speech recognition. In this paper we propose and validate an approach to model the execution time for training convolutional neural networks (CNNs) deployed on GPGPUs. We demonstrate that our approach is generally applicable to a variety of CNN models and different types of G PG PU s with high accuracy, aiming at the preliminary design phases for system sizing.