{"title":"爆炸性气泡在非平稳波动下的时变试验","authors":"Eiji Kurozumi, A. Skrobotov, A. Tsarev","doi":"10.2139/ssrn.3755872","DOIUrl":null,"url":null,"abstract":"This paper is devoted to testing for the explosive bubble under time-varying non-stationary volatility. Because the limiting distribution of the seminal Phillips et al. (2011) test depends on the variance function and usually requires a bootstrap implementation under heteroskedasticity, we construct the test based on a deformation of the time domain. The proposed test is asymptotically pivotal under the null hypothesis and its limiting distribution coincides with that of the standard test under homoskedasticity, so that the test does not require computationally extensive methods for inference. Appealing finite sample properties are demonstrated through Monte-Carlo simulations. An empirical application demonstrates that the upsurge behavior of cryptocurrency time series in the middle of the sample is partially explained by the volatility change.","PeriodicalId":319022,"journal":{"name":"Economics of Networks eJournal","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time-Transformed Test for the Explosive Bubbles under Non-stationary Volatility\",\"authors\":\"Eiji Kurozumi, A. Skrobotov, A. Tsarev\",\"doi\":\"10.2139/ssrn.3755872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to testing for the explosive bubble under time-varying non-stationary volatility. Because the limiting distribution of the seminal Phillips et al. (2011) test depends on the variance function and usually requires a bootstrap implementation under heteroskedasticity, we construct the test based on a deformation of the time domain. The proposed test is asymptotically pivotal under the null hypothesis and its limiting distribution coincides with that of the standard test under homoskedasticity, so that the test does not require computationally extensive methods for inference. Appealing finite sample properties are demonstrated through Monte-Carlo simulations. An empirical application demonstrates that the upsurge behavior of cryptocurrency time series in the middle of the sample is partially explained by the volatility change.\",\"PeriodicalId\":319022,\"journal\":{\"name\":\"Economics of Networks eJournal\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economics of Networks eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3755872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics of Networks eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3755872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-Transformed Test for the Explosive Bubbles under Non-stationary Volatility
This paper is devoted to testing for the explosive bubble under time-varying non-stationary volatility. Because the limiting distribution of the seminal Phillips et al. (2011) test depends on the variance function and usually requires a bootstrap implementation under heteroskedasticity, we construct the test based on a deformation of the time domain. The proposed test is asymptotically pivotal under the null hypothesis and its limiting distribution coincides with that of the standard test under homoskedasticity, so that the test does not require computationally extensive methods for inference. Appealing finite sample properties are demonstrated through Monte-Carlo simulations. An empirical application demonstrates that the upsurge behavior of cryptocurrency time series in the middle of the sample is partially explained by the volatility change.