{"title":"纳米机器间分子通信的吞吐量和效率","authors":"T. Nakano, Yutaka Okaie, A. Vasilakos","doi":"10.1109/WCNC.2012.6214461","DOIUrl":null,"url":null,"abstract":"This paper focuses on throughput and efficiency of molecular communication between a pair of sender and receiver nanomachines. In the molecular communication considered in this paper, the sender transmits molecules at a fixed rate, the molecules propagate in the environment, and the receiver captures and processes the molecules following simple enzyme kinetics. We define throughput as the average number of molecules processed by the receiver per unit time, and efficiency as the throughput divided by the number of molecules transmitted by the sender per unit time. An upper bound on throughput and efficiency at steady-state are first derived. Simulation results are then provided to show that the throughput increases as the transmission rate increases and that the efficiency has an optimal transmission rate to achieve the maximum.","PeriodicalId":329194,"journal":{"name":"2012 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Throughput and efficiency of molecular communication between nanomachines\",\"authors\":\"T. Nakano, Yutaka Okaie, A. Vasilakos\",\"doi\":\"10.1109/WCNC.2012.6214461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on throughput and efficiency of molecular communication between a pair of sender and receiver nanomachines. In the molecular communication considered in this paper, the sender transmits molecules at a fixed rate, the molecules propagate in the environment, and the receiver captures and processes the molecules following simple enzyme kinetics. We define throughput as the average number of molecules processed by the receiver per unit time, and efficiency as the throughput divided by the number of molecules transmitted by the sender per unit time. An upper bound on throughput and efficiency at steady-state are first derived. Simulation results are then provided to show that the throughput increases as the transmission rate increases and that the efficiency has an optimal transmission rate to achieve the maximum.\",\"PeriodicalId\":329194,\"journal\":{\"name\":\"2012 IEEE Wireless Communications and Networking Conference (WCNC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Wireless Communications and Networking Conference (WCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC.2012.6214461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2012.6214461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Throughput and efficiency of molecular communication between nanomachines
This paper focuses on throughput and efficiency of molecular communication between a pair of sender and receiver nanomachines. In the molecular communication considered in this paper, the sender transmits molecules at a fixed rate, the molecules propagate in the environment, and the receiver captures and processes the molecules following simple enzyme kinetics. We define throughput as the average number of molecules processed by the receiver per unit time, and efficiency as the throughput divided by the number of molecules transmitted by the sender per unit time. An upper bound on throughput and efficiency at steady-state are first derived. Simulation results are then provided to show that the throughput increases as the transmission rate increases and that the efficiency has an optimal transmission rate to achieve the maximum.