基于dct的掌纹识别特征提取算法

H. Imtiaz, S. Fattah
{"title":"基于dct的掌纹识别特征提取算法","authors":"H. Imtiaz, S. Fattah","doi":"10.1109/ICCCCT.2010.5670758","DOIUrl":null,"url":null,"abstract":"In this paper, a frequency domain feature extraction algorithm for palm-print recognition is proposed, which efficiently exploits the local spatial variations in a palm-print image. The entire image is segmented into several narrow-width spatial bands and a palm-print recognition scheme is developed based on extracting dominant spectral features from each of these bands using two-dimensional discrete cosine transform (2D-DCT). The proposed dominant spectral feature selection algorithm offers an advantage of very low feature dimension and it is capable of capturing precisely the detail variations within the palm-print image, which results in a very high within-class compactness and between-class separability of the extracted features. From our extensive experimentations on different palm-print databases, it is found that the performance of the proposed method in terms of recognition accuracy and computational complexity is superior to that of some of the recent methods.","PeriodicalId":250834,"journal":{"name":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A DCT-based feature extraction algorithm for palm-print recognition\",\"authors\":\"H. Imtiaz, S. Fattah\",\"doi\":\"10.1109/ICCCCT.2010.5670758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a frequency domain feature extraction algorithm for palm-print recognition is proposed, which efficiently exploits the local spatial variations in a palm-print image. The entire image is segmented into several narrow-width spatial bands and a palm-print recognition scheme is developed based on extracting dominant spectral features from each of these bands using two-dimensional discrete cosine transform (2D-DCT). The proposed dominant spectral feature selection algorithm offers an advantage of very low feature dimension and it is capable of capturing precisely the detail variations within the palm-print image, which results in a very high within-class compactness and between-class separability of the extracted features. From our extensive experimentations on different palm-print databases, it is found that the performance of the proposed method in terms of recognition accuracy and computational complexity is superior to that of some of the recent methods.\",\"PeriodicalId\":250834,\"journal\":{\"name\":\"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCCT.2010.5670758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCCT.2010.5670758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文提出了一种有效利用掌纹图像局部空间变化特征的掌纹识别频域特征提取算法。将整个图像分割成多个窄带,利用二维离散余弦变换(2D-DCT)从每个窄带中提取优势光谱特征,提出了一种掌纹识别方案。所提出的优势光谱特征选择算法具有特征维数极低的优点,能够准确地捕捉掌纹图像的细节变化,从而使提取的掌纹特征具有很高的类内紧密度和类间可分性。通过在不同的掌纹数据库上的大量实验,我们发现该方法在识别精度和计算复杂度方面都优于目前的一些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A DCT-based feature extraction algorithm for palm-print recognition
In this paper, a frequency domain feature extraction algorithm for palm-print recognition is proposed, which efficiently exploits the local spatial variations in a palm-print image. The entire image is segmented into several narrow-width spatial bands and a palm-print recognition scheme is developed based on extracting dominant spectral features from each of these bands using two-dimensional discrete cosine transform (2D-DCT). The proposed dominant spectral feature selection algorithm offers an advantage of very low feature dimension and it is capable of capturing precisely the detail variations within the palm-print image, which results in a very high within-class compactness and between-class separability of the extracted features. From our extensive experimentations on different palm-print databases, it is found that the performance of the proposed method in terms of recognition accuracy and computational complexity is superior to that of some of the recent methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Face recognition system using multi layer feed Forward Neural Networks and Principal Component Analysis with variable learning rate VLSI design of mixed radix FFT Processor for MIMO OFDM in wireless communications Cellular phone based biomedical system for health care Intelligent based modelling, control and fault detection of chemical process Analysis of linear biconical antenna array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1