基于稀疏自编码器和生成对抗网络的信用卡欺诈检测

Jian Chen, Yao Shen, Riaz Ali
{"title":"基于稀疏自编码器和生成对抗网络的信用卡欺诈检测","authors":"Jian Chen, Yao Shen, Riaz Ali","doi":"10.1109/IEMCON.2018.8614815","DOIUrl":null,"url":null,"abstract":"Current credit card detection methods usually utilize the idea of classification, requiring a balanced training dataset which should contain both positive and negative samples. However, we often get highly skewed datasets with very few frauds. In this paper, we want to apply deep learning techniques to help handle this situation. We firstly use sparse autoencoder (SAE) to obtain representations of normal transactions and then train a generative adversarial network (GAN) with these representations. Finally, we combine the SAE and the discriminator of GAN and apply them to detect whether a transaction is genuine or fraud. The experimental results show that our solution outperforms the other state-of-the-art one-class methods.","PeriodicalId":368939,"journal":{"name":"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Credit Card Fraud Detection Using Sparse Autoencoder and Generative Adversarial Network\",\"authors\":\"Jian Chen, Yao Shen, Riaz Ali\",\"doi\":\"10.1109/IEMCON.2018.8614815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current credit card detection methods usually utilize the idea of classification, requiring a balanced training dataset which should contain both positive and negative samples. However, we often get highly skewed datasets with very few frauds. In this paper, we want to apply deep learning techniques to help handle this situation. We firstly use sparse autoencoder (SAE) to obtain representations of normal transactions and then train a generative adversarial network (GAN) with these representations. Finally, we combine the SAE and the discriminator of GAN and apply them to detect whether a transaction is genuine or fraud. The experimental results show that our solution outperforms the other state-of-the-art one-class methods.\",\"PeriodicalId\":368939,\"journal\":{\"name\":\"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMCON.2018.8614815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON.2018.8614815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

目前的信用卡检测方法通常利用分类的思想,需要一个平衡的训练数据集,其中应该包含正样本和负样本。然而,我们经常得到高度扭曲的数据集,其中很少有欺诈行为。在本文中,我们希望应用深度学习技术来帮助处理这种情况。我们首先使用稀疏自编码器(SAE)获得正常事务的表示,然后使用这些表示训练生成式对抗网络(GAN)。最后,我们将SAE和GAN的鉴别器结合起来,并应用它们来检测交易是真实的还是欺诈的。实验结果表明,我们的解决方案优于其他最先进的一类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Credit Card Fraud Detection Using Sparse Autoencoder and Generative Adversarial Network
Current credit card detection methods usually utilize the idea of classification, requiring a balanced training dataset which should contain both positive and negative samples. However, we often get highly skewed datasets with very few frauds. In this paper, we want to apply deep learning techniques to help handle this situation. We firstly use sparse autoencoder (SAE) to obtain representations of normal transactions and then train a generative adversarial network (GAN) with these representations. Finally, we combine the SAE and the discriminator of GAN and apply them to detect whether a transaction is genuine or fraud. The experimental results show that our solution outperforms the other state-of-the-art one-class methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Fog Node Model for Multi-purpose Fog Computing Systems Research-Practice Gap in Passive House Standard Propagation Modeling of IoT Devices for Deployment in Multi-level Hilly Urban Environments Architectures and Challenges Towards Software Defined Cloud of Things (SDCoT) Unveiling Topics from Scientific Literature on the Subject of Self-driving Cars using Latent Dirichlet Allocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1