面向移动机器人定位的协同分布式传感器

Zhiwei Liang, Songhao Zhu
{"title":"面向移动机器人定位的协同分布式传感器","authors":"Zhiwei Liang, Songhao Zhu","doi":"10.4236/wsn.2010.24046","DOIUrl":null,"url":null,"abstract":"This paper presents a probabilistic algorithm to collaborate distributed sensors for mobile robot localization. It uses a sample-based version of Markov localization—Monte Carlo localization (MCL), capable of localizing mobile robot in an any-time fashion. During robot localization given a known environment model, MCL method is employed to update robot’s belief whichever information (positive or negative) attained from environmental sensors. Meanwhile, an implementation is presented that uses color environmental cameras for robot detection. All the parameters of each environmental camera are unknown in advance and need be calibrated independently by robot. Once calibrated, the positive and negative detection models can be built up according to the parameters of environmental cameras. A further experiment, obtained with the real robot in an indoor office environment, illustrates it has drastic improvement in global localization speed and accuracy using our algorithm.","PeriodicalId":251051,"journal":{"name":"Wirel. Sens. Netw.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cooperative Distributed Sensors for Mobile Robot Localization\",\"authors\":\"Zhiwei Liang, Songhao Zhu\",\"doi\":\"10.4236/wsn.2010.24046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a probabilistic algorithm to collaborate distributed sensors for mobile robot localization. It uses a sample-based version of Markov localization—Monte Carlo localization (MCL), capable of localizing mobile robot in an any-time fashion. During robot localization given a known environment model, MCL method is employed to update robot’s belief whichever information (positive or negative) attained from environmental sensors. Meanwhile, an implementation is presented that uses color environmental cameras for robot detection. All the parameters of each environmental camera are unknown in advance and need be calibrated independently by robot. Once calibrated, the positive and negative detection models can be built up according to the parameters of environmental cameras. A further experiment, obtained with the real robot in an indoor office environment, illustrates it has drastic improvement in global localization speed and accuracy using our algorithm.\",\"PeriodicalId\":251051,\"journal\":{\"name\":\"Wirel. Sens. Netw.\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wirel. Sens. Netw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/wsn.2010.24046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wirel. Sens. Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/wsn.2010.24046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种用于移动机器人定位的分布式传感器协同概率算法。它使用基于样本的马尔可夫定位-蒙特卡洛定位(MCL),能够随时对移动机器人进行定位。在给定已知环境模型的机器人定位过程中,采用MCL方法对机器人的信念进行更新,无论从环境传感器获得的是正信息还是负信息。同时,提出了一种利用彩色环境摄像机对机器人进行检测的实现方案。每个环境摄像机的所有参数都是事先未知的,需要机器人独立标定。标定后,可根据环境相机的参数建立正、负检测模型。在室内办公环境中对真实机器人进行的进一步实验表明,使用该算法可以显著提高全局定位的速度和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cooperative Distributed Sensors for Mobile Robot Localization
This paper presents a probabilistic algorithm to collaborate distributed sensors for mobile robot localization. It uses a sample-based version of Markov localization—Monte Carlo localization (MCL), capable of localizing mobile robot in an any-time fashion. During robot localization given a known environment model, MCL method is employed to update robot’s belief whichever information (positive or negative) attained from environmental sensors. Meanwhile, an implementation is presented that uses color environmental cameras for robot detection. All the parameters of each environmental camera are unknown in advance and need be calibrated independently by robot. Once calibrated, the positive and negative detection models can be built up according to the parameters of environmental cameras. A further experiment, obtained with the real robot in an indoor office environment, illustrates it has drastic improvement in global localization speed and accuracy using our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D DOPs for Positioning Applications Using Range Measurements An Energy-Based Stochastic Model for Wireless Sensor Networks ANCAEE: A Novel Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks Wireless Power Generation Strategy Using EAP Actuated Energy Harvester for Marine Information Acquisition Wireless Sensor Network for Monitoring Maturity Stage of Fruit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1