多相永磁同步电动机的模型预测直接开关控制

Michael Ringkowski, Stefan Gering, M. Manderla, E. Arnold, O. Sawodny
{"title":"多相永磁同步电动机的模型预测直接开关控制","authors":"Michael Ringkowski, Stefan Gering, M. Manderla, E. Arnold, O. Sawodny","doi":"10.23919/ECC.2018.8550596","DOIUrl":null,"url":null,"abstract":"In model predictive direct switching control (MPDSC) approaches, the finite set of inverter switch positions for the control of electrical drives is taken as control variables within the MPC underlying optimization problem. The cost function can be designed to track a torque or current reference while also considering additional control goals like minimizing switching and conduction losses, as well as physical constraints. The challenge is to solve the resulting integer quadratically constrained quadratic program (IQCQP) with high sampling frequencies online in order to obtain the optimal switch positions at each fixed time step. This paper presents two new MPDSC algorithms, namely relaxed barrier functions iteration scheme (RBF) and alternating direction method of multipliers heuristic (ADMM) and compares them with two state-of-the-art algorithms, namely full enumeration (FE) and multistep with sphere decoding (MSD) for the example of a multi-phase permanent-magnet synchronous motor (PMSM) in simulations.","PeriodicalId":222660,"journal":{"name":"2018 European Control Conference (ECC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Predictive Direct Switching Control for Multi-Phase Permanent-Magnet Synchronous Motors\",\"authors\":\"Michael Ringkowski, Stefan Gering, M. Manderla, E. Arnold, O. Sawodny\",\"doi\":\"10.23919/ECC.2018.8550596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In model predictive direct switching control (MPDSC) approaches, the finite set of inverter switch positions for the control of electrical drives is taken as control variables within the MPC underlying optimization problem. The cost function can be designed to track a torque or current reference while also considering additional control goals like minimizing switching and conduction losses, as well as physical constraints. The challenge is to solve the resulting integer quadratically constrained quadratic program (IQCQP) with high sampling frequencies online in order to obtain the optimal switch positions at each fixed time step. This paper presents two new MPDSC algorithms, namely relaxed barrier functions iteration scheme (RBF) and alternating direction method of multipliers heuristic (ADMM) and compares them with two state-of-the-art algorithms, namely full enumeration (FE) and multistep with sphere decoding (MSD) for the example of a multi-phase permanent-magnet synchronous motor (PMSM) in simulations.\",\"PeriodicalId\":222660,\"journal\":{\"name\":\"2018 European Control Conference (ECC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.2018.8550596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2018.8550596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在模型预测直接开关控制(MPDSC)方法中,将控制电驱动的有限逆变器开关位置集作为MPC底层优化问题的控制变量。成本函数可以设计为跟踪扭矩或电流参考,同时还考虑其他控制目标,如最小化开关和传导损耗,以及物理限制。该方法的难点在于如何在线求解高采样频率的整数二次约束规划(IQCQP),以获得每个固定时间步长的最优开关位置。本文提出了两种新的MPDSC算法,即放宽势垒函数迭代法(RBF)和乘法器启发式交替方向法(ADMM),并以多相永磁同步电机(PMSM)为例,将其与两种最先进的算法,即全枚举法(FE)和多步球面译码法(MSD)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Predictive Direct Switching Control for Multi-Phase Permanent-Magnet Synchronous Motors
In model predictive direct switching control (MPDSC) approaches, the finite set of inverter switch positions for the control of electrical drives is taken as control variables within the MPC underlying optimization problem. The cost function can be designed to track a torque or current reference while also considering additional control goals like minimizing switching and conduction losses, as well as physical constraints. The challenge is to solve the resulting integer quadratically constrained quadratic program (IQCQP) with high sampling frequencies online in order to obtain the optimal switch positions at each fixed time step. This paper presents two new MPDSC algorithms, namely relaxed barrier functions iteration scheme (RBF) and alternating direction method of multipliers heuristic (ADMM) and compares them with two state-of-the-art algorithms, namely full enumeration (FE) and multistep with sphere decoding (MSD) for the example of a multi-phase permanent-magnet synchronous motor (PMSM) in simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing Communication Topologies for Optimal Synchronization Trajectories of HomogeneousLinear Multi-Agent Systems Inner-Loop Reference Governor Design with an Application to Human-in-the-Loop Control Quadcopter-performed cinematographic flight plans using minimum jerk trajectories and predictive camera control Model Predictive Direct Switching Control for Multi-Phase Permanent-Magnet Synchronous Motors On-line fuel-efficiency optimization of Diesel engines using constrained multivariable extremum-seeking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1