学习时态知识图推理的长期和短期表示

Mengqi Zhang, Yuwei Xia, Q. Liu, Shu Wu, Liang Wang
{"title":"学习时态知识图推理的长期和短期表示","authors":"Mengqi Zhang, Yuwei Xia, Q. Liu, Shu Wu, Liang Wang","doi":"10.1145/3543507.3583242","DOIUrl":null,"url":null,"abstract":"Temporal Knowledge graph (TKG) reasoning aims to predict missing facts based on historical TKG data. Most of the existing methods are incapable of explicitly modeling the long-term time dependencies from history and neglect the adaptive integration of the long- and short-term information. To tackle these problems, we propose a novel method that utilizes a designed Hierarchical Relational Graph Neural Network to learn the Long- and Short-term representations for TKG reasoning, namely HGLS. Specifically, to explicitly associate entities in different timestamps, we first transform the TKG into a global graph. Based on the built graph, we design a Hierarchical Relational Graph Neural Network that executes in two levels: The sub-graph level is to capture the semantic dependencies within concurrent facts of each KG. And the global-graph level aims to model the temporal dependencies between entities. Furthermore, we design a module to extract the long- and short-term information from the output of these two levels. Finally, the long- and short-term representations are fused into a unified one by Gating Integration for entity prediction. Extensive experiments on four datasets demonstrate the effectiveness of HGLS.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Learning Long- and Short-term Representations for Temporal Knowledge Graph Reasoning\",\"authors\":\"Mengqi Zhang, Yuwei Xia, Q. Liu, Shu Wu, Liang Wang\",\"doi\":\"10.1145/3543507.3583242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal Knowledge graph (TKG) reasoning aims to predict missing facts based on historical TKG data. Most of the existing methods are incapable of explicitly modeling the long-term time dependencies from history and neglect the adaptive integration of the long- and short-term information. To tackle these problems, we propose a novel method that utilizes a designed Hierarchical Relational Graph Neural Network to learn the Long- and Short-term representations for TKG reasoning, namely HGLS. Specifically, to explicitly associate entities in different timestamps, we first transform the TKG into a global graph. Based on the built graph, we design a Hierarchical Relational Graph Neural Network that executes in two levels: The sub-graph level is to capture the semantic dependencies within concurrent facts of each KG. And the global-graph level aims to model the temporal dependencies between entities. Furthermore, we design a module to extract the long- and short-term information from the output of these two levels. Finally, the long- and short-term representations are fused into a unified one by Gating Integration for entity prediction. Extensive experiments on four datasets demonstrate the effectiveness of HGLS.\",\"PeriodicalId\":296351,\"journal\":{\"name\":\"Proceedings of the ACM Web Conference 2023\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Web Conference 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543507.3583242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

时间知识图(TKG)推理的目的是基于历史TKG数据预测缺失的事实。现有的方法大多不能明确地对历史数据的长期依赖关系进行建模,忽视了对长短期信息的自适应集成。为了解决这些问题,我们提出了一种新的方法,利用设计的层次关系图神经网络来学习TKG推理的长期和短期表示,即HGLS。具体来说,为了显式地关联不同时间戳中的实体,我们首先将TKG转换为全局图。基于构建的图,我们设计了一个分层关系图神经网络,该网络分两个级别执行:子图级别捕获每个KG并发事实中的语义依赖关系。而全局图层旨在对实体之间的时间依赖关系进行建模。此外,我们设计了一个模块来从这两个层次的输出中提取长期和短期信息。最后,通过门控集成将长、短期表征融合为一个统一的表征,进行实体预测。在四个数据集上的大量实验证明了HGLS的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Long- and Short-term Representations for Temporal Knowledge Graph Reasoning
Temporal Knowledge graph (TKG) reasoning aims to predict missing facts based on historical TKG data. Most of the existing methods are incapable of explicitly modeling the long-term time dependencies from history and neglect the adaptive integration of the long- and short-term information. To tackle these problems, we propose a novel method that utilizes a designed Hierarchical Relational Graph Neural Network to learn the Long- and Short-term representations for TKG reasoning, namely HGLS. Specifically, to explicitly associate entities in different timestamps, we first transform the TKG into a global graph. Based on the built graph, we design a Hierarchical Relational Graph Neural Network that executes in two levels: The sub-graph level is to capture the semantic dependencies within concurrent facts of each KG. And the global-graph level aims to model the temporal dependencies between entities. Furthermore, we design a module to extract the long- and short-term information from the output of these two levels. Finally, the long- and short-term representations are fused into a unified one by Gating Integration for entity prediction. Extensive experiments on four datasets demonstrate the effectiveness of HGLS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CurvDrop: A Ricci Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing Learning to Simulate Crowd Trajectories with Graph Networks Word Sense Disambiguation by Refining Target Word Embedding Curriculum Graph Poisoning Optimizing Guided Traversal for Fast Learned Sparse Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1