网络入侵检测的特征选择方法

Kok-Chin Khor, Choo-Yee Ting, Somnuk-Phon Amnuaisuk
{"title":"网络入侵检测的特征选择方法","authors":"Kok-Chin Khor, Choo-Yee Ting, Somnuk-Phon Amnuaisuk","doi":"10.1109/ICIME.2009.68","DOIUrl":null,"url":null,"abstract":"Processing huge amount of collected network data to identify network intrusions needs high computational cost. Reducing features in the collected data may therefore solve the problem. We proposed an approach for obtaining optimal number of features to build an efficient model for intrusion detection system (IDS). Two feature selection algorithms were involved to generate two feature sets. These two features sets were then utilized to produce a combined and a shared feature set, respectively. The shared feature set consisted of features agreed by the two feature selection algorithms and therefore considered important features for identifying intrusions. Human intervention was then conducted to find an optimal number of features in between the combined (maximum) and shared feature sets (minimum). Empirical results showed that the proposed feature set gave equivalent results compared to the feature sets generated by the selected feature selection methods, and combined feature sets.","PeriodicalId":445284,"journal":{"name":"2009 International Conference on Information Management and Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A Feature Selection Approach for Network Intrusion Detection\",\"authors\":\"Kok-Chin Khor, Choo-Yee Ting, Somnuk-Phon Amnuaisuk\",\"doi\":\"10.1109/ICIME.2009.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing huge amount of collected network data to identify network intrusions needs high computational cost. Reducing features in the collected data may therefore solve the problem. We proposed an approach for obtaining optimal number of features to build an efficient model for intrusion detection system (IDS). Two feature selection algorithms were involved to generate two feature sets. These two features sets were then utilized to produce a combined and a shared feature set, respectively. The shared feature set consisted of features agreed by the two feature selection algorithms and therefore considered important features for identifying intrusions. Human intervention was then conducted to find an optimal number of features in between the combined (maximum) and shared feature sets (minimum). Empirical results showed that the proposed feature set gave equivalent results compared to the feature sets generated by the selected feature selection methods, and combined feature sets.\",\"PeriodicalId\":445284,\"journal\":{\"name\":\"2009 International Conference on Information Management and Engineering\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Information Management and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIME.2009.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Information Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIME.2009.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

处理收集到的大量网络数据来识别网络入侵需要很高的计算成本。因此,减少收集数据中的特征可能会解决这个问题。提出了一种获取最优特征数的方法,以建立入侵检测系统的有效模型。采用两种特征选择算法生成两个特征集。然后利用这两个特性集分别生成一个组合的和一个共享的特性集。共享特征集由两种特征选择算法一致的特征组成,因此考虑了识别入侵的重要特征。然后进行人工干预,以在组合(最大)和共享特征集(最小)之间找到最优数量的特征。实验结果表明,所提出的特征集与所选择的特征选择方法和组合特征集产生的特征集结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Feature Selection Approach for Network Intrusion Detection
Processing huge amount of collected network data to identify network intrusions needs high computational cost. Reducing features in the collected data may therefore solve the problem. We proposed an approach for obtaining optimal number of features to build an efficient model for intrusion detection system (IDS). Two feature selection algorithms were involved to generate two feature sets. These two features sets were then utilized to produce a combined and a shared feature set, respectively. The shared feature set consisted of features agreed by the two feature selection algorithms and therefore considered important features for identifying intrusions. Human intervention was then conducted to find an optimal number of features in between the combined (maximum) and shared feature sets (minimum). Empirical results showed that the proposed feature set gave equivalent results compared to the feature sets generated by the selected feature selection methods, and combined feature sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Rekeying Protocol for 802.11s Key Management Prediction of Sunspot Series Using BiLinear Recurrent Neural Network Research on Index System of Dynamic Customer Segmentation Based on the Case Study of China Telecom E-learning and its Impact to the Educational System in the Arab World A Next-Gen Network Switch Software Automation Upgrade Method Based on a Two-step Inference Expert System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1