从运动中划分结构的光谱

Drew Steedly, Irfan Essa, F. Dellaert
{"title":"从运动中划分结构的光谱","authors":"Drew Steedly, Irfan Essa, F. Dellaert","doi":"10.1109/ICCV.2003.1238457","DOIUrl":null,"url":null,"abstract":"We propose a spectral partitioning approach for large-scale optimization problems, specifically structure from motion. In structure from motion, partitioning methods reduce the problem into smaller and better conditioned subproblems which can be efficiently optimized. Our partitioning method uses only the Hessian of the reprojection error and its eigenvector. We show that partitioned systems that preserve the eigenvectors corresponding to small eigenvalues result in lower residual error when optimized. We create partitions by clustering the entries of the eigenvectors of the Hessian corresponding to small eigenvalues. This is a more general technique than relying on domain knowledge and heuristics such as bottom-up structure from motion approaches. Simultaneously, it takes advantage of more information than generic matrix partitioning algorithms.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Spectral partitioning for structure from motion\",\"authors\":\"Drew Steedly, Irfan Essa, F. Dellaert\",\"doi\":\"10.1109/ICCV.2003.1238457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a spectral partitioning approach for large-scale optimization problems, specifically structure from motion. In structure from motion, partitioning methods reduce the problem into smaller and better conditioned subproblems which can be efficiently optimized. Our partitioning method uses only the Hessian of the reprojection error and its eigenvector. We show that partitioned systems that preserve the eigenvectors corresponding to small eigenvalues result in lower residual error when optimized. We create partitions by clustering the entries of the eigenvectors of the Hessian corresponding to small eigenvalues. This is a more general technique than relying on domain knowledge and heuristics such as bottom-up structure from motion approaches. Simultaneously, it takes advantage of more information than generic matrix partitioning algorithms.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

我们提出了一种用于大规模优化问题的谱划分方法,特别是运动结构优化问题。在从运动到结构的问题中,划分方法将问题分解为更小、条件更好的子问题,可以有效地进行优化。我们的划分方法只使用重投影误差及其特征向量的Hessian。我们证明了保留小特征值对应的特征向量的分割系统在优化时可以得到较小的残差。我们通过聚类Hessian特征向量对应于小特征值的条目来创建分区。这是一种比依赖领域知识和启发式(如运动方法的自下而上结构)更通用的技术。同时,它比一般的矩阵划分算法利用了更多的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral partitioning for structure from motion
We propose a spectral partitioning approach for large-scale optimization problems, specifically structure from motion. In structure from motion, partitioning methods reduce the problem into smaller and better conditioned subproblems which can be efficiently optimized. Our partitioning method uses only the Hessian of the reprojection error and its eigenvector. We show that partitioned systems that preserve the eigenvectors corresponding to small eigenvalues result in lower residual error when optimized. We create partitions by clustering the entries of the eigenvectors of the Hessian corresponding to small eigenvalues. This is a more general technique than relying on domain knowledge and heuristics such as bottom-up structure from motion approaches. Simultaneously, it takes advantage of more information than generic matrix partitioning algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of static and dynamic body biometrics for gait recognition Selection of scale-invariant parts for object class recognition Information theoretic focal length selection for real-time active 3D object tracking A multi-scale generative model for animate shapes and parts Integrated edge and junction detection with the boundary tensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1