迈向一个全面的虚拟机动态迁移性能模型

Senthil Nathan, U. Bellur, Purushottam Kulkarni
{"title":"迈向一个全面的虚拟机动态迁移性能模型","authors":"Senthil Nathan, U. Bellur, Purushottam Kulkarni","doi":"10.1145/2806777.2806838","DOIUrl":null,"url":null,"abstract":"Although many models exist to predict the time taken to migrate a virtual machine from one physical machine to another, our empirical validation of these models has shown the 90th percentile error to be 46% (43 secs) and 159% (112 secs) for KVM and Xen live migration, respectively. Our analysis reveals that these models are fundamentally flawed as they all fail to take into account the following three critical parameters: (i) the writable working set size, (ii) the number of pages eligible for the skip technique, (iii) the relation of the number of skipped pages with the page dirty rate and the page transfer rate, and incorrectly model the key parameter---the number of new pages dirtied per unit time. In this paper, we propose a novel model that takes all these parameters into account. We present a thorough validation with 53 workloads and show that the 90th percentile error in the estimated migration times is only 12% (8 secs) and 19% (14 secs) for KVM and Xen live migration, respectively.","PeriodicalId":275158,"journal":{"name":"Proceedings of the Sixth ACM Symposium on Cloud Computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Towards a comprehensive performance model of virtual machine live migration\",\"authors\":\"Senthil Nathan, U. Bellur, Purushottam Kulkarni\",\"doi\":\"10.1145/2806777.2806838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although many models exist to predict the time taken to migrate a virtual machine from one physical machine to another, our empirical validation of these models has shown the 90th percentile error to be 46% (43 secs) and 159% (112 secs) for KVM and Xen live migration, respectively. Our analysis reveals that these models are fundamentally flawed as they all fail to take into account the following three critical parameters: (i) the writable working set size, (ii) the number of pages eligible for the skip technique, (iii) the relation of the number of skipped pages with the page dirty rate and the page transfer rate, and incorrectly model the key parameter---the number of new pages dirtied per unit time. In this paper, we propose a novel model that takes all these parameters into account. We present a thorough validation with 53 workloads and show that the 90th percentile error in the estimated migration times is only 12% (8 secs) and 19% (14 secs) for KVM and Xen live migration, respectively.\",\"PeriodicalId\":275158,\"journal\":{\"name\":\"Proceedings of the Sixth ACM Symposium on Cloud Computing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth ACM Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2806777.2806838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2806777.2806838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

尽管存在许多模型来预测将虚拟机从一台物理机迁移到另一台物理机所花费的时间,但我们对这些模型的经验验证表明,KVM和Xen实时迁移的第90个百分点误差分别为46%(43秒)和159%(112秒)。我们的分析表明,这些模型从根本上是有缺陷的,因为它们都没有考虑到以下三个关键参数:(i)可写工作集大小,(ii)符合跳过技术的页面数量,(iii)跳过页面数量与页面脏率和页面传输速率的关系,并且错误地建模关键参数-每单位时间脏的新页面数量。在本文中,我们提出了一个考虑所有这些参数的新模型。我们对53个工作负载进行了彻底的验证,并显示KVM和Xen实时迁移的估计迁移时间的第90个百分位数误差分别为12%(8秒)和19%(14秒)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a comprehensive performance model of virtual machine live migration
Although many models exist to predict the time taken to migrate a virtual machine from one physical machine to another, our empirical validation of these models has shown the 90th percentile error to be 46% (43 secs) and 159% (112 secs) for KVM and Xen live migration, respectively. Our analysis reveals that these models are fundamentally flawed as they all fail to take into account the following three critical parameters: (i) the writable working set size, (ii) the number of pages eligible for the skip technique, (iii) the relation of the number of skipped pages with the page dirty rate and the page transfer rate, and incorrectly model the key parameter---the number of new pages dirtied per unit time. In this paper, we propose a novel model that takes all these parameters into account. We present a thorough validation with 53 workloads and show that the 90th percentile error in the estimated migration times is only 12% (8 secs) and 19% (14 secs) for KVM and Xen live migration, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software-defined caching: managing caches in multi-tenant data centers Managed communication and consistency for fast data-parallel iterative analytics MemcachedGPU: scaling-up scale-out key-value stores Database high availability using SHADOW systems Proceedings of the Sixth ACM Symposium on Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1