基于智能手机的牙周病检测方法

B. Askarian, F. Tabei, Grace Anne Tipton, J. Chong
{"title":"基于智能手机的牙周病检测方法","authors":"B. Askarian, F. Tabei, Grace Anne Tipton, J. Chong","doi":"10.1109/HI-POCT45284.2019.8962844","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel periodontal disease detection method using smartphones, image processing, and machine learning techniques. Periodontal disease is an inflammatory disease known to be the main cause of tooth loss. Here, a CIELAB color space is adopted for feature extraction and the support vector machine (SVM) is applied for distinguishing healthy gum from diseased gum. A gadget is designed to block ambient light and eliminate refraction effect as well. We recruited 30 subjects consisting of 15 gum-diseased and 15 healthy subjects. Experimental results show that our proposed method detects periodontal infection with 94.3% accuracy, 92.6% sensitivity, and 93% specificity, respectively.","PeriodicalId":269346,"journal":{"name":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Smartphone-Based Method for Detecting Periodontal Disease\",\"authors\":\"B. Askarian, F. Tabei, Grace Anne Tipton, J. Chong\",\"doi\":\"10.1109/HI-POCT45284.2019.8962844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel periodontal disease detection method using smartphones, image processing, and machine learning techniques. Periodontal disease is an inflammatory disease known to be the main cause of tooth loss. Here, a CIELAB color space is adopted for feature extraction and the support vector machine (SVM) is applied for distinguishing healthy gum from diseased gum. A gadget is designed to block ambient light and eliminate refraction effect as well. We recruited 30 subjects consisting of 15 gum-diseased and 15 healthy subjects. Experimental results show that our proposed method detects periodontal infection with 94.3% accuracy, 92.6% sensitivity, and 93% specificity, respectively.\",\"PeriodicalId\":269346,\"journal\":{\"name\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HI-POCT45284.2019.8962844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HI-POCT45284.2019.8962844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种利用智能手机、图像处理和机器学习技术的新型牙周病检测方法。牙周病是一种炎症性疾病,是导致牙齿脱落的主要原因。本文采用CIELAB颜色空间进行特征提取,并采用支持向量机(SVM)进行健康牙龈和病变牙龈的区分。设计了一个小装置,可以阻挡环境光并消除折射效应。我们招募了30名受试者,其中15名牙龈病患者和15名健康受试者。实验结果表明,该方法检测牙周感染的准确率为94.3%,灵敏度为92.6%,特异性为93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smartphone-Based Method for Detecting Periodontal Disease
In this paper, we propose a novel periodontal disease detection method using smartphones, image processing, and machine learning techniques. Periodontal disease is an inflammatory disease known to be the main cause of tooth loss. Here, a CIELAB color space is adopted for feature extraction and the support vector machine (SVM) is applied for distinguishing healthy gum from diseased gum. A gadget is designed to block ambient light and eliminate refraction effect as well. We recruited 30 subjects consisting of 15 gum-diseased and 15 healthy subjects. Experimental results show that our proposed method detects periodontal infection with 94.3% accuracy, 92.6% sensitivity, and 93% specificity, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Nanoscale Electrode for Biosensing A Motion Free Image Based TRF Reader for Quantitative Immunoassay Gaze-based video games for assessment of attention outside of the lab Conjugated Barcoded Particles for Multiplexed Biomarker Quantification with a Microfluidic Biochip Daily Locomotor Movement Recognition with a Smart Insole and a Pre-defined Route Map: Towards Early Motor Dysfunction Detection*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1