面向人脸识别的双目标特征选择与尺度欧氏分类

Siddharth Srivatsa, Prajwal Shanthakumar, K. Manikantan, S. Ramachandran
{"title":"面向人脸识别的双目标特征选择与尺度欧氏分类","authors":"Siddharth Srivatsa, Prajwal Shanthakumar, K. Manikantan, S. Ramachandran","doi":"10.1109/NCVPRIPG.2013.6776153","DOIUrl":null,"url":null,"abstract":"The statistical description of the face varies drastically with changes in pose, illumination and expression. These variations make face recognition (FR) even more challenging. In this paper, two novel techniques are proposed, viz., Dual Objective Feature Selection to learn and select only discriminant features and Scaled Euclidean Classification to exploit within-class information for smarter matching. The 1-D discrete cosine transform (DCT) is used for efficient feature extraction. A complete FR system for enhanced recognition performance is presented. Experimental results on three benchmark face databases, namely, Color FERET, CMU PIE and ORL, illustrate the promising performance of the proposed techniques for face recognition.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dual Objective Feature Selection and Scaled Euclidean Classification for face recognition\",\"authors\":\"Siddharth Srivatsa, Prajwal Shanthakumar, K. Manikantan, S. Ramachandran\",\"doi\":\"10.1109/NCVPRIPG.2013.6776153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The statistical description of the face varies drastically with changes in pose, illumination and expression. These variations make face recognition (FR) even more challenging. In this paper, two novel techniques are proposed, viz., Dual Objective Feature Selection to learn and select only discriminant features and Scaled Euclidean Classification to exploit within-class information for smarter matching. The 1-D discrete cosine transform (DCT) is used for efficient feature extraction. A complete FR system for enhanced recognition performance is presented. Experimental results on three benchmark face databases, namely, Color FERET, CMU PIE and ORL, illustrate the promising performance of the proposed techniques for face recognition.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

面部的统计描述随着姿势、光照和表情的变化而急剧变化。这些变化使得人脸识别(FR)更具挑战性。本文提出了两种新技术:双目标特征选择(Dual Objective Feature Selection)和尺度欧几里德分类(scale Euclidean Classification),分别用于学习和选择判别特征和利用类内信息进行智能匹配。采用一维离散余弦变换(DCT)进行特征提取。提出了一种完整的增强识别性能的FR系统。在Color FERET、CMU PIE和ORL三个基准人脸数据库上的实验结果表明,所提出的人脸识别技术具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual Objective Feature Selection and Scaled Euclidean Classification for face recognition
The statistical description of the face varies drastically with changes in pose, illumination and expression. These variations make face recognition (FR) even more challenging. In this paper, two novel techniques are proposed, viz., Dual Objective Feature Selection to learn and select only discriminant features and Scaled Euclidean Classification to exploit within-class information for smarter matching. The 1-D discrete cosine transform (DCT) is used for efficient feature extraction. A complete FR system for enhanced recognition performance is presented. Experimental results on three benchmark face databases, namely, Color FERET, CMU PIE and ORL, illustrate the promising performance of the proposed techniques for face recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1