Mohammad H. Nassralla, Ahmad M. El-Hajj, Fady Baly, Z. Dawy
{"title":"动态脑电图压缩方法与优化失真水平的移动医疗解决方案","authors":"Mohammad H. Nassralla, Ahmad M. El-Hajj, Fady Baly, Z. Dawy","doi":"10.1109/HealthCom.2016.7749535","DOIUrl":null,"url":null,"abstract":"The development of a neurologically-oriented mobile health system involves significant challenges in terms of the proper sensing and efficient transmission of electroencephalogram (EEG) signals, and the faithful reconstruction of these signals at the receiving node. EEG compression has been widely used to reduce storage requirements, improve the real time processing of the sensed signals, and provide a better and timely feedback to the concerned patients. The non-stationarity of the EEG signals and the large volumes of data being continuously processed mandate the development of data reduction schemes that provide a good tradeoff between compression performance and the preservation of the signal quality and integrity. To this end, we propose in this work a dynamic and effective compression approach for EEG data that relies on a sequence of compression and decompression phases to optimize the compression rate while maintaining a distortion level below a target threshold. Simulation results using real EEG data segments show that even with stringent quality requirements, a notable compression ratio can be attained with minimal processing overhead.","PeriodicalId":167022,"journal":{"name":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic EEG compression approach with optimized distortion level for mobile health solutions\",\"authors\":\"Mohammad H. Nassralla, Ahmad M. El-Hajj, Fady Baly, Z. Dawy\",\"doi\":\"10.1109/HealthCom.2016.7749535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of a neurologically-oriented mobile health system involves significant challenges in terms of the proper sensing and efficient transmission of electroencephalogram (EEG) signals, and the faithful reconstruction of these signals at the receiving node. EEG compression has been widely used to reduce storage requirements, improve the real time processing of the sensed signals, and provide a better and timely feedback to the concerned patients. The non-stationarity of the EEG signals and the large volumes of data being continuously processed mandate the development of data reduction schemes that provide a good tradeoff between compression performance and the preservation of the signal quality and integrity. To this end, we propose in this work a dynamic and effective compression approach for EEG data that relies on a sequence of compression and decompression phases to optimize the compression rate while maintaining a distortion level below a target threshold. Simulation results using real EEG data segments show that even with stringent quality requirements, a notable compression ratio can be attained with minimal processing overhead.\",\"PeriodicalId\":167022,\"journal\":{\"name\":\"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HealthCom.2016.7749535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HealthCom.2016.7749535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic EEG compression approach with optimized distortion level for mobile health solutions
The development of a neurologically-oriented mobile health system involves significant challenges in terms of the proper sensing and efficient transmission of electroencephalogram (EEG) signals, and the faithful reconstruction of these signals at the receiving node. EEG compression has been widely used to reduce storage requirements, improve the real time processing of the sensed signals, and provide a better and timely feedback to the concerned patients. The non-stationarity of the EEG signals and the large volumes of data being continuously processed mandate the development of data reduction schemes that provide a good tradeoff between compression performance and the preservation of the signal quality and integrity. To this end, we propose in this work a dynamic and effective compression approach for EEG data that relies on a sequence of compression and decompression phases to optimize the compression rate while maintaining a distortion level below a target threshold. Simulation results using real EEG data segments show that even with stringent quality requirements, a notable compression ratio can be attained with minimal processing overhead.