基于神经网络的人工视觉道路跟踪

M Mazo, F.J Rodriguez, E Santiso, M.A Sotelo
{"title":"基于神经网络的人工视觉道路跟踪","authors":"M Mazo,&nbsp;F.J Rodriguez,&nbsp;E Santiso,&nbsp;M.A Sotelo","doi":"10.1016/0066-4138(94)90067-1","DOIUrl":null,"url":null,"abstract":"<div><p>It has been developed, built and tested an artificial vision based system to follow roads, which provides control signals, in a short time, by means of a joint of artificial neural nets. The image is segmented in “road” or “not road.” The obtained segmentation is the input for two neural nets, a classic architecture net (NN), and a TDNN (Time Delay Neural Network) one. The outputs provided by both nets, with a trajectory estimation, are introduced to a decision-making block, which selects the alternative containing less error. The classifier parameters are updated according to the current segmentation.</p></div>","PeriodicalId":100097,"journal":{"name":"Annual Review in Automatic Programming","volume":"19 ","pages":"Pages 209-214"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0066-4138(94)90067-1","citationCount":"4","resultStr":"{\"title\":\"Road following by artificial vision using neural network\",\"authors\":\"M Mazo,&nbsp;F.J Rodriguez,&nbsp;E Santiso,&nbsp;M.A Sotelo\",\"doi\":\"10.1016/0066-4138(94)90067-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It has been developed, built and tested an artificial vision based system to follow roads, which provides control signals, in a short time, by means of a joint of artificial neural nets. The image is segmented in “road” or “not road.” The obtained segmentation is the input for two neural nets, a classic architecture net (NN), and a TDNN (Time Delay Neural Network) one. The outputs provided by both nets, with a trajectory estimation, are introduced to a decision-making block, which selects the alternative containing less error. The classifier parameters are updated according to the current segmentation.</p></div>\",\"PeriodicalId\":100097,\"journal\":{\"name\":\"Annual Review in Automatic Programming\",\"volume\":\"19 \",\"pages\":\"Pages 209-214\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0066-4138(94)90067-1\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review in Automatic Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0066413894900671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review in Automatic Programming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0066413894900671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

它已经开发、建造并测试了一个基于人工视觉的道路跟踪系统,该系统通过人工神经网络的联合在短时间内提供控制信号。图像被分割为“道路”或“非道路”。得到的分割是两个神经网络的输入,一个是经典结构网络(NN),另一个是时延神经网络(TDNN)。将两种网络提供的输出带轨迹估计引入决策块,决策块选择误差较小的备选方案。分类器参数根据当前分割更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Road following by artificial vision using neural network

It has been developed, built and tested an artificial vision based system to follow roads, which provides control signals, in a short time, by means of a joint of artificial neural nets. The image is segmented in “road” or “not road.” The obtained segmentation is the input for two neural nets, a classic architecture net (NN), and a TDNN (Time Delay Neural Network) one. The outputs provided by both nets, with a trajectory estimation, are introduced to a decision-making block, which selects the alternative containing less error. The classifier parameters are updated according to the current segmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author index Foreword Keyword index Author index Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1