利用局部图匹配稳健估计干细胞谱系

Min Liu, A. Roy-Chowdhury, G. Reddy
{"title":"利用局部图匹配稳健估计干细胞谱系","authors":"Min Liu, A. Roy-Chowdhury, G. Reddy","doi":"10.1109/CVPRW.2009.5204045","DOIUrl":null,"url":null,"abstract":"In this paper, we present a local graph matching based method for tracking cells and cell divisions. This will allow us to estimate the lineages of the cells in a 4D spatio-temporal image stack obtained using fluorescence imaging techniques. We work with plant cells, where the cells are tightly clustered in space and computing correspondences in space and time can be very challenging. The local graph matching method is able to compute the lineages even when significant portions of the images are corrupted due to sensor noise in the imaging process or segmentation errors. The geometric structure and topology of the cells' relative positions are efficiently exploited to solve the tracking problem using the local graph matching technique. The process not only computes the correspondences of cells across spatial and temporal image slices, but is also able to find out where and when cells divide, identify new cells and detect missing ones. Using this method we show experimental results to track the properly segmented cells, and compute cell lineages from images captured over 72 hours, even when some of those images are highly noisy (e.g., missing cells).","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Robust estimation of stem cell lineages using local graph matching\",\"authors\":\"Min Liu, A. Roy-Chowdhury, G. Reddy\",\"doi\":\"10.1109/CVPRW.2009.5204045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a local graph matching based method for tracking cells and cell divisions. This will allow us to estimate the lineages of the cells in a 4D spatio-temporal image stack obtained using fluorescence imaging techniques. We work with plant cells, where the cells are tightly clustered in space and computing correspondences in space and time can be very challenging. The local graph matching method is able to compute the lineages even when significant portions of the images are corrupted due to sensor noise in the imaging process or segmentation errors. The geometric structure and topology of the cells' relative positions are efficiently exploited to solve the tracking problem using the local graph matching technique. The process not only computes the correspondences of cells across spatial and temporal image slices, but is also able to find out where and when cells divide, identify new cells and detect missing ones. Using this method we show experimental results to track the properly segmented cells, and compute cell lineages from images captured over 72 hours, even when some of those images are highly noisy (e.g., missing cells).\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们提出了一种基于局部图匹配的细胞和细胞分裂跟踪方法。这将使我们能够在使用荧光成像技术获得的4D时空图像堆栈中估计细胞的谱系。我们研究的是植物细胞,这些细胞在空间上紧密地聚集在一起,计算空间和时间上的对应关系非常具有挑战性。局部图匹配方法即使在图像的重要部分由于成像过程中的传感器噪声或分割错误而损坏时也能够计算出谱系。利用细胞相对位置的几何结构和拓扑结构,利用局部图匹配技术有效地解决了跟踪问题。该过程不仅计算细胞在空间和时间图像切片上的对应关系,而且还能够找出细胞分裂的地点和时间,识别新细胞并检测缺失的细胞。使用这种方法,我们展示了实验结果来跟踪正确分割的细胞,并从超过72小时捕获的图像中计算细胞谱系,即使其中一些图像非常嘈杂(例如,缺失的细胞)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust estimation of stem cell lineages using local graph matching
In this paper, we present a local graph matching based method for tracking cells and cell divisions. This will allow us to estimate the lineages of the cells in a 4D spatio-temporal image stack obtained using fluorescence imaging techniques. We work with plant cells, where the cells are tightly clustered in space and computing correspondences in space and time can be very challenging. The local graph matching method is able to compute the lineages even when significant portions of the images are corrupted due to sensor noise in the imaging process or segmentation errors. The geometric structure and topology of the cells' relative positions are efficiently exploited to solve the tracking problem using the local graph matching technique. The process not only computes the correspondences of cells across spatial and temporal image slices, but is also able to find out where and when cells divide, identify new cells and detect missing ones. Using this method we show experimental results to track the properly segmented cells, and compute cell lineages from images captured over 72 hours, even when some of those images are highly noisy (e.g., missing cells).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1