边扫描声纳图像中棘刀藻菌落识别的纹理分析方法

Richard Harrison, F. Bianconi, Richard Harvey, Wenjia Wang
{"title":"边扫描声纳图像中棘刀藻菌落识别的纹理分析方法","authors":"Richard Harrison, F. Bianconi, Richard Harvey, Wenjia Wang","doi":"10.1109/IMVIP.2011.19","DOIUrl":null,"url":null,"abstract":"Offshore wind farms are undergoing unprecedented development as EU member states focus on complying with 2020 renewable energy mandates. However, wind farm site placement requires great care, to avoid compromising protected habitats, such as Sabellaria spinulosa reefs. This paper presents an investigation into the potential of different feature generation methods for identifying sides can sonar image textures characteristic of Sabellaria spinulosa colonies. We propose an extensible test methodology and carry out a detailed comparison of several textural features. Our results show that Gabor filter bank features yield good (up to 89.4% overall) classification accuracies and often outperform other methods in identifying the Sabellaria spinulosa textural class. A Dual-Tree Complex Wavelet Transform, Ring filters and some statistical methods also produce encouraging results.","PeriodicalId":179414,"journal":{"name":"2011 Irish Machine Vision and Image Processing Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Texture Analysis Approach to Identifying Sabellaria Spinulosa Colonies in Sidescan Sonar Imagery\",\"authors\":\"Richard Harrison, F. Bianconi, Richard Harvey, Wenjia Wang\",\"doi\":\"10.1109/IMVIP.2011.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Offshore wind farms are undergoing unprecedented development as EU member states focus on complying with 2020 renewable energy mandates. However, wind farm site placement requires great care, to avoid compromising protected habitats, such as Sabellaria spinulosa reefs. This paper presents an investigation into the potential of different feature generation methods for identifying sides can sonar image textures characteristic of Sabellaria spinulosa colonies. We propose an extensible test methodology and carry out a detailed comparison of several textural features. Our results show that Gabor filter bank features yield good (up to 89.4% overall) classification accuracies and often outperform other methods in identifying the Sabellaria spinulosa textural class. A Dual-Tree Complex Wavelet Transform, Ring filters and some statistical methods also produce encouraging results.\",\"PeriodicalId\":179414,\"journal\":{\"name\":\"2011 Irish Machine Vision and Image Processing Conference\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Irish Machine Vision and Image Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMVIP.2011.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Irish Machine Vision and Image Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMVIP.2011.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着欧盟成员国致力于遵守2020年可再生能源要求,海上风力发电场正在经历前所未有的发展。然而,风力发电场的选址需要非常小心,以避免损害受保护的栖息地,如沙贝拉刺礁。本文研究了不同特征生成方法在识别棘Sabellaria spinulosa菌落侧面声呐图像纹理特征方面的潜力。我们提出了一种可扩展的测试方法,并对几种纹理特征进行了详细的比较。我们的研究结果表明,Gabor滤波器组特征产生了良好的分类准确率(总体高达89.4%),并且在识别Sabellaria spinulosa纹理类方面通常优于其他方法。双树复小波变换、环滤波器和一些统计方法也取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Texture Analysis Approach to Identifying Sabellaria Spinulosa Colonies in Sidescan Sonar Imagery
Offshore wind farms are undergoing unprecedented development as EU member states focus on complying with 2020 renewable energy mandates. However, wind farm site placement requires great care, to avoid compromising protected habitats, such as Sabellaria spinulosa reefs. This paper presents an investigation into the potential of different feature generation methods for identifying sides can sonar image textures characteristic of Sabellaria spinulosa colonies. We propose an extensible test methodology and carry out a detailed comparison of several textural features. Our results show that Gabor filter bank features yield good (up to 89.4% overall) classification accuracies and often outperform other methods in identifying the Sabellaria spinulosa textural class. A Dual-Tree Complex Wavelet Transform, Ring filters and some statistical methods also produce encouraging results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Augmented Vision: Seeing beyond Field of View and Occlusions via Uncalibrated Visual Transfer from Multiple Viewpoints A Feature Set for Enhanced Automatic Segmentation of Hyperspectral Terahertz Images Cell Segmentation in Time-Lapse Phase Contrast Data Optic Flow Providing External Force for Active Contours in Visually Tracking Dense Cell Population Short Stereo Baseline Retroreflector Detection Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1