{"title":"基于语义和改进卷积神经网络的文档分类","authors":"Rong Li, Wei-Bai Zhou, Wei Liu","doi":"10.1145/3417188.3417196","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy of text classification, we present a new convolution neural network model combining keyword and word-meaning transformation. We first preprocess the text and break words, and use sense labeling for semantic keywords and word-meaning transformation. and we divide the texts into two parts---word and word-meaning. Next, we use embedding layer to transform the word and word-meaning into corresponding word embedding. Then, we use improved convoluted neural network to train the model and extract higher-order features of text type data, and use multi-layer perceptron and SoftMax layer to classify the texts to predict the category of each text. Experimental results show that our document classification algorithm can get a high accuracy and the effect of classification of news topic detection gets well.","PeriodicalId":373913,"journal":{"name":"Proceedings of the 2020 4th International Conference on Deep Learning Technologies","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Document Classification Based on semantic and Improved Convolutional Neural Network\",\"authors\":\"Rong Li, Wei-Bai Zhou, Wei Liu\",\"doi\":\"10.1145/3417188.3417196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the accuracy of text classification, we present a new convolution neural network model combining keyword and word-meaning transformation. We first preprocess the text and break words, and use sense labeling for semantic keywords and word-meaning transformation. and we divide the texts into two parts---word and word-meaning. Next, we use embedding layer to transform the word and word-meaning into corresponding word embedding. Then, we use improved convoluted neural network to train the model and extract higher-order features of text type data, and use multi-layer perceptron and SoftMax layer to classify the texts to predict the category of each text. Experimental results show that our document classification algorithm can get a high accuracy and the effect of classification of news topic detection gets well.\",\"PeriodicalId\":373913,\"journal\":{\"name\":\"Proceedings of the 2020 4th International Conference on Deep Learning Technologies\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 4th International Conference on Deep Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3417188.3417196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 4th International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3417188.3417196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Document Classification Based on semantic and Improved Convolutional Neural Network
In order to improve the accuracy of text classification, we present a new convolution neural network model combining keyword and word-meaning transformation. We first preprocess the text and break words, and use sense labeling for semantic keywords and word-meaning transformation. and we divide the texts into two parts---word and word-meaning. Next, we use embedding layer to transform the word and word-meaning into corresponding word embedding. Then, we use improved convoluted neural network to train the model and extract higher-order features of text type data, and use multi-layer perceptron and SoftMax layer to classify the texts to predict the category of each text. Experimental results show that our document classification algorithm can get a high accuracy and the effect of classification of news topic detection gets well.