植物基因网络的叶片分割与平行表型分析

Olivier Janssens, Jonas De Vylder, J. Aelterman, S. Verstockt, W. Philips, D. Straeten, S. Hoecke, R. Walle
{"title":"植物基因网络的叶片分割与平行表型分析","authors":"Olivier Janssens, Jonas De Vylder, J. Aelterman, S. Verstockt, W. Philips, D. Straeten, S. Hoecke, R. Walle","doi":"10.5281/ZENODO.43589","DOIUrl":null,"url":null,"abstract":"Over the last 4 years phenotyping is becoming more and more automated, decreasing a lot of manual labour. Features, which uniquely define the plant, can be extracted automatically from images. As a lot of plant data has to be processed in order to extract the features, fast processing of these features is a challenge. Therefore in this paper, a new method for automatic segmentation of individual leaves from plants with a circular arrangement of leaves (rosettes) is proposed, together with an algorithm to extract the line of symmetry of the leaf. Furthermore, in order to achieve fast processing for phenotyping plants, four feature extraction methods are parallelised in order to run on the CPU and GPU. Our evaluation results show that by parallelizing the feature extraction methods, it is possible to calculate the image moments, area, histogram and sum of intensities 5 to 45 times faster than single threaded implementations.","PeriodicalId":400766,"journal":{"name":"21st European Signal Processing Conference (EUSIPCO 2013)","volume":"776 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Leaf segmentation and parallel phenotyping for the analysis of gene networks in plants\",\"authors\":\"Olivier Janssens, Jonas De Vylder, J. Aelterman, S. Verstockt, W. Philips, D. Straeten, S. Hoecke, R. Walle\",\"doi\":\"10.5281/ZENODO.43589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last 4 years phenotyping is becoming more and more automated, decreasing a lot of manual labour. Features, which uniquely define the plant, can be extracted automatically from images. As a lot of plant data has to be processed in order to extract the features, fast processing of these features is a challenge. Therefore in this paper, a new method for automatic segmentation of individual leaves from plants with a circular arrangement of leaves (rosettes) is proposed, together with an algorithm to extract the line of symmetry of the leaf. Furthermore, in order to achieve fast processing for phenotyping plants, four feature extraction methods are parallelised in order to run on the CPU and GPU. Our evaluation results show that by parallelizing the feature extraction methods, it is possible to calculate the image moments, area, histogram and sum of intensities 5 to 45 times faster than single threaded implementations.\",\"PeriodicalId\":400766,\"journal\":{\"name\":\"21st European Signal Processing Conference (EUSIPCO 2013)\",\"volume\":\"776 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st European Signal Processing Conference (EUSIPCO 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.43589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st European Signal Processing Conference (EUSIPCO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在过去的4年里,表型分析变得越来越自动化,减少了大量的体力劳动。可以从图像中自动提取唯一定义植物的特征。由于需要处理大量的植物数据来提取特征,因此快速处理这些特征是一个挑战。为此,本文提出了一种叶片呈圆形排列的植物单叶自动分割的新方法,并提出了一种提取叶片对称线的算法。此外,为了实现植物表型的快速处理,为了在CPU和GPU上运行,并行化了四种特征提取方法。我们的评估结果表明,通过并行化特征提取方法,可以比单线程实现更快地计算图像矩、面积、直方图和强度之和5到45倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leaf segmentation and parallel phenotyping for the analysis of gene networks in plants
Over the last 4 years phenotyping is becoming more and more automated, decreasing a lot of manual labour. Features, which uniquely define the plant, can be extracted automatically from images. As a lot of plant data has to be processed in order to extract the features, fast processing of these features is a challenge. Therefore in this paper, a new method for automatic segmentation of individual leaves from plants with a circular arrangement of leaves (rosettes) is proposed, together with an algorithm to extract the line of symmetry of the leaf. Furthermore, in order to achieve fast processing for phenotyping plants, four feature extraction methods are parallelised in order to run on the CPU and GPU. Our evaluation results show that by parallelizing the feature extraction methods, it is possible to calculate the image moments, area, histogram and sum of intensities 5 to 45 times faster than single threaded implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iterative algorithms for unbiased FIR state estimation in discrete time Detection of clipping in coded speech signals Primary emitter localization using smartly initialized Metropolis-Hastings algorithm Online multi-speaker tracking using multiple microphone arrays informed by auditory scene analysis Fast diffraction-pattern matching for object detection and recognition in digital holograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1