scale - e: Kubernetes环境中实现最佳大数据负载平衡的自动缩放代理

Efstratios Karypiadis, Anastasios Nikolakopoulos, Achilleas Marinakis, Vrettos Moulos, T. Varvarigou
{"title":"scale - e: Kubernetes环境中实现最佳大数据负载平衡的自动缩放代理","authors":"Efstratios Karypiadis, Anastasios Nikolakopoulos, Achilleas Marinakis, Vrettos Moulos, T. Varvarigou","doi":"10.1109/cits55221.2022.9832990","DOIUrl":null,"url":null,"abstract":"During the past years, the issue of effectively balancing incoming big data streams has been under serious research. It still allows for new solutions, even if load balancing is already being addressed by multiple frameworks. This paper proposes a smart agent, named “SCAL-E“ that achieves balancing of big data loads and lives within the Kubernetes Environment. SCAL-E takes advantage of MongoDB’s scaling, replicating & sharding capabilities and decides when to increase or decrease its repository’s sub-components, based on the incoming load. This way, SCAL-E assures of proper resource allocation and gives efficiency to the jobs of big data storing & forwarding.","PeriodicalId":136239,"journal":{"name":"2022 International Conference on Computer, Information and Telecommunication Systems (CITS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SCAL-E: An Auto Scaling Agent for Optimum Big Data Load Balancing in Kubernetes Environments\",\"authors\":\"Efstratios Karypiadis, Anastasios Nikolakopoulos, Achilleas Marinakis, Vrettos Moulos, T. Varvarigou\",\"doi\":\"10.1109/cits55221.2022.9832990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the past years, the issue of effectively balancing incoming big data streams has been under serious research. It still allows for new solutions, even if load balancing is already being addressed by multiple frameworks. This paper proposes a smart agent, named “SCAL-E“ that achieves balancing of big data loads and lives within the Kubernetes Environment. SCAL-E takes advantage of MongoDB’s scaling, replicating & sharding capabilities and decides when to increase or decrease its repository’s sub-components, based on the incoming load. This way, SCAL-E assures of proper resource allocation and gives efficiency to the jobs of big data storing & forwarding.\",\"PeriodicalId\":136239,\"journal\":{\"name\":\"2022 International Conference on Computer, Information and Telecommunication Systems (CITS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Computer, Information and Telecommunication Systems (CITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cits55221.2022.9832990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer, Information and Telecommunication Systems (CITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cits55221.2022.9832990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在过去的几年里,有效平衡传入的大数据流的问题一直在认真研究。它仍然允许新的解决方案,即使多个框架已经解决了负载平衡问题。本文提出了一个名为“scale - e”的智能代理,它可以在Kubernetes环境中实现大数据负载和生存的平衡。scale - e利用MongoDB的扩展、复制和分片功能,并根据传入的负载决定何时增加或减少其存储库的子组件。这样,scale - e保证了资源的合理分配,并提高了大数据存储和转发工作的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SCAL-E: An Auto Scaling Agent for Optimum Big Data Load Balancing in Kubernetes Environments
During the past years, the issue of effectively balancing incoming big data streams has been under serious research. It still allows for new solutions, even if load balancing is already being addressed by multiple frameworks. This paper proposes a smart agent, named “SCAL-E“ that achieves balancing of big data loads and lives within the Kubernetes Environment. SCAL-E takes advantage of MongoDB’s scaling, replicating & sharding capabilities and decides when to increase or decrease its repository’s sub-components, based on the incoming load. This way, SCAL-E assures of proper resource allocation and gives efficiency to the jobs of big data storing & forwarding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking container network connections in a Digital Data Marketplace with P4 Ciphertext-Policy Attribute-based Encryption for Securing IoT Devices in Fog Computing A CNN based localization and activity recognition algorithm using multi-receiver CSI measurements and decision fusion Learning-Automata-Based Energy Efficient Model for Device Lifetime Enhancement in LoRaWAN Networks A Deep Learning Based Bluetooth Indoor Localization Algorithm by RSSI and AOA Feature Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1