高维数据隐变量贝叶斯网络的有效参数学习

Xinran Wu, Xiang Chen, Kun Yue
{"title":"高维数据隐变量贝叶斯网络的有效参数学习","authors":"Xinran Wu, Xiang Chen, Kun Yue","doi":"10.1109/AICAS57966.2023.10168662","DOIUrl":null,"url":null,"abstract":"Bayesian network with latent variables (BNLV) plays an important role in the representation of dependence relations and inference of uncertain knowledge with unobserved variables. The variables with large cardinalities in high-dimensional data make it challenging to efficiently learn the large-scaled probability parameters as the conditional probability distributions (CPDs) of BNLV. In this paper, we first propose the multinomial parameter network to parameterize the CPDs w.r.t. latent variables. Then, we extend the M-step of the classic EM algorithm and give the efficient algorithm for parameter learning of BNLV. Experimental results show that our proposed method outperforms some state-of-the-art competitors.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Parameter Learning of Bayesian Network with Latent Variables from High-Dimensional Data\",\"authors\":\"Xinran Wu, Xiang Chen, Kun Yue\",\"doi\":\"10.1109/AICAS57966.2023.10168662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian network with latent variables (BNLV) plays an important role in the representation of dependence relations and inference of uncertain knowledge with unobserved variables. The variables with large cardinalities in high-dimensional data make it challenging to efficiently learn the large-scaled probability parameters as the conditional probability distributions (CPDs) of BNLV. In this paper, we first propose the multinomial parameter network to parameterize the CPDs w.r.t. latent variables. Then, we extend the M-step of the classic EM algorithm and give the efficient algorithm for parameter learning of BNLV. Experimental results show that our proposed method outperforms some state-of-the-art competitors.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

隐变量贝叶斯网络(BNLV)在不确定知识与未观察变量的依赖关系表示和推理中起着重要作用。高维数据中具有大基数的变量使得作为BNLV条件概率分布(CPDs)的大尺度概率参数的高效学习成为一项挑战。在本文中,我们首先提出了多项式参数网络来参数化CPDs的潜在变量。然后,对经典EM算法的m步进行了扩展,给出了BNLV参数学习的有效算法。实验结果表明,我们提出的方法优于一些最先进的竞争对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Parameter Learning of Bayesian Network with Latent Variables from High-Dimensional Data
Bayesian network with latent variables (BNLV) plays an important role in the representation of dependence relations and inference of uncertain knowledge with unobserved variables. The variables with large cardinalities in high-dimensional data make it challenging to efficiently learn the large-scaled probability parameters as the conditional probability distributions (CPDs) of BNLV. In this paper, we first propose the multinomial parameter network to parameterize the CPDs w.r.t. latent variables. Then, we extend the M-step of the classic EM algorithm and give the efficient algorithm for parameter learning of BNLV. Experimental results show that our proposed method outperforms some state-of-the-art competitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1