{"title":"随机几何和无线网络,第1卷:理论","authors":"F. Baccelli, B. Błaszczyszyn","doi":"10.1561/1300000006","DOIUrl":null,"url":null,"abstract":"Volume I first provides a compact survey on classical stochastic geometry models, with a main focus on spatial shot-noise processes, coverage processes and random tessellations. It then focuses on signal to interference noise ratio (SINR) stochastic geometry, which is the basis for the modeling of wireless network protocols and architectures considered in Volume II. It also contains an appendix on mathematical tools used throughout Stochastic Geometry and Wireless Networks, Volumes I and II.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"797","resultStr":"{\"title\":\"Stochastic Geometry and Wireless Networks, Volume 1: Theory\",\"authors\":\"F. Baccelli, B. Błaszczyszyn\",\"doi\":\"10.1561/1300000006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volume I first provides a compact survey on classical stochastic geometry models, with a main focus on spatial shot-noise processes, coverage processes and random tessellations. It then focuses on signal to interference noise ratio (SINR) stochastic geometry, which is the basis for the modeling of wireless network protocols and architectures considered in Volume II. It also contains an appendix on mathematical tools used throughout Stochastic Geometry and Wireless Networks, Volumes I and II.\",\"PeriodicalId\":188056,\"journal\":{\"name\":\"Found. Trends Netw.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"797\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Found. Trends Netw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/1300000006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/1300000006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic Geometry and Wireless Networks, Volume 1: Theory
Volume I first provides a compact survey on classical stochastic geometry models, with a main focus on spatial shot-noise processes, coverage processes and random tessellations. It then focuses on signal to interference noise ratio (SINR) stochastic geometry, which is the basis for the modeling of wireless network protocols and architectures considered in Volume II. It also contains an appendix on mathematical tools used throughout Stochastic Geometry and Wireless Networks, Volumes I and II.