Moustafa M. Awad, Hassan H. Halawa, M. Rentschler, R. Daoud, H. Amer
{"title":"新颖的铁路无线通信系统架构","authors":"Moustafa M. Awad, Hassan H. Halawa, M. Rentschler, R. Daoud, H. Amer","doi":"10.1109/EUROCON.2017.8011237","DOIUrl":null,"url":null,"abstract":"Railway communications are essential nowadays enabling passengers to stay connected to entertainment as well as other bandwidth-demanding applications. This is particularly challenging because wireless communication standards are not fully customized to overcome railway environment challenges including high handover frequency, group handover and Quality of Service (QoS) guarantees. In this paper, a novel system architecture for railway wireless communications is proposed. The proposed heterogeneous system utilizes the Parallel Redundancy Protocol (PRP), the 4G Long Term Evolution (LTE) cellular protocol and as well as the IEEE 802.11n (Wi-Fi) wireless protocol. The goal of the proposed system is to quantify the overall system performance through several metrics (such as the data loss ratio, average packets dropped, handover delay and LTE delay) thereby ensuring that the proposed system can meet the required entertainment benchmarks. A performance simulation-based study is conducted to validate the feasibility of the proposed system in an urban railway environment. Simulation results show that the proposed architecture achieves improved performance for a high-load scenario even with added background traffic as compared to a conventional railway architecture for wireless communications.","PeriodicalId":114100,"journal":{"name":"IEEE EUROCON 2017 -17th International Conference on Smart Technologies","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Novel system architecture for railway wireless communications\",\"authors\":\"Moustafa M. Awad, Hassan H. Halawa, M. Rentschler, R. Daoud, H. Amer\",\"doi\":\"10.1109/EUROCON.2017.8011237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Railway communications are essential nowadays enabling passengers to stay connected to entertainment as well as other bandwidth-demanding applications. This is particularly challenging because wireless communication standards are not fully customized to overcome railway environment challenges including high handover frequency, group handover and Quality of Service (QoS) guarantees. In this paper, a novel system architecture for railway wireless communications is proposed. The proposed heterogeneous system utilizes the Parallel Redundancy Protocol (PRP), the 4G Long Term Evolution (LTE) cellular protocol and as well as the IEEE 802.11n (Wi-Fi) wireless protocol. The goal of the proposed system is to quantify the overall system performance through several metrics (such as the data loss ratio, average packets dropped, handover delay and LTE delay) thereby ensuring that the proposed system can meet the required entertainment benchmarks. A performance simulation-based study is conducted to validate the feasibility of the proposed system in an urban railway environment. Simulation results show that the proposed architecture achieves improved performance for a high-load scenario even with added background traffic as compared to a conventional railway architecture for wireless communications.\",\"PeriodicalId\":114100,\"journal\":{\"name\":\"IEEE EUROCON 2017 -17th International Conference on Smart Technologies\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2017 -17th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2017.8011237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2017 -17th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2017.8011237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel system architecture for railway wireless communications
Railway communications are essential nowadays enabling passengers to stay connected to entertainment as well as other bandwidth-demanding applications. This is particularly challenging because wireless communication standards are not fully customized to overcome railway environment challenges including high handover frequency, group handover and Quality of Service (QoS) guarantees. In this paper, a novel system architecture for railway wireless communications is proposed. The proposed heterogeneous system utilizes the Parallel Redundancy Protocol (PRP), the 4G Long Term Evolution (LTE) cellular protocol and as well as the IEEE 802.11n (Wi-Fi) wireless protocol. The goal of the proposed system is to quantify the overall system performance through several metrics (such as the data loss ratio, average packets dropped, handover delay and LTE delay) thereby ensuring that the proposed system can meet the required entertainment benchmarks. A performance simulation-based study is conducted to validate the feasibility of the proposed system in an urban railway environment. Simulation results show that the proposed architecture achieves improved performance for a high-load scenario even with added background traffic as compared to a conventional railway architecture for wireless communications.