基于移位算子的方向自适应离散小波包分解在图像压缩中的应用

S. Andriani, D. Taubman
{"title":"基于移位算子的方向自适应离散小波包分解在图像压缩中的应用","authors":"S. Andriani, D. Taubman","doi":"10.1109/ICIAP.2007.99","DOIUrl":null,"url":null,"abstract":"In this paper we present novel techniques to adapt conventional wavelet transforms to follow locally oriented features found in images. We introduce a shift operator before each step in a lifting implementation of the DWT. The best shifts are estimated by minimizing the high-pass coefficient energy and then used in both the prediction and update lifting steps. To approximate the asymptotically optimal rate-distortion performance of a piece-wise regular function more closely, we adopt a packet wavelet decomposition. Experimental results obtained integrating the proposed transform into the JPEG2000 codec show improvements in both visual and objective tests, allowing for a \"better\" representation of the edges at very-low rates. Very recently, some related ideas have been presented by other authors. The most distinctive features of this paper include a more flexible packet wavelet decomposition structure and a comparison between subband- and image-domain shifting operators.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Orientation Adaptive Discrete Packet Wavelet Decomposition via Shifting Operators for Image Compression\",\"authors\":\"S. Andriani, D. Taubman\",\"doi\":\"10.1109/ICIAP.2007.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present novel techniques to adapt conventional wavelet transforms to follow locally oriented features found in images. We introduce a shift operator before each step in a lifting implementation of the DWT. The best shifts are estimated by minimizing the high-pass coefficient energy and then used in both the prediction and update lifting steps. To approximate the asymptotically optimal rate-distortion performance of a piece-wise regular function more closely, we adopt a packet wavelet decomposition. Experimental results obtained integrating the proposed transform into the JPEG2000 codec show improvements in both visual and objective tests, allowing for a \\\"better\\\" representation of the edges at very-low rates. Very recently, some related ideas have been presented by other authors. The most distinctive features of this paper include a more flexible packet wavelet decomposition structure and a comparison between subband- and image-domain shifting operators.\",\"PeriodicalId\":118466,\"journal\":{\"name\":\"14th International Conference on Image Analysis and Processing (ICIAP 2007)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th International Conference on Image Analysis and Processing (ICIAP 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2007.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了新的技术来适应传统的小波变换,以跟踪图像中的局部定向特征。我们在DWT的提升实现的每一步之前引入一个移位运算符。通过最小化高通系数能量来估计最佳位移,然后将其用于预测和更新提升步骤。为了更接近地逼近分段正则函数的渐近最优率失真性能,我们采用了包小波分解。将提出的变换集成到JPEG2000编解码器中获得的实验结果表明,视觉和客观测试都有所改善,允许以非常低的速率“更好”地表示边缘。最近,其他作者提出了一些相关的观点。本文最显著的特点包括更灵活的分组小波分解结构以及子带和图像域移位算子的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Orientation Adaptive Discrete Packet Wavelet Decomposition via Shifting Operators for Image Compression
In this paper we present novel techniques to adapt conventional wavelet transforms to follow locally oriented features found in images. We introduce a shift operator before each step in a lifting implementation of the DWT. The best shifts are estimated by minimizing the high-pass coefficient energy and then used in both the prediction and update lifting steps. To approximate the asymptotically optimal rate-distortion performance of a piece-wise regular function more closely, we adopt a packet wavelet decomposition. Experimental results obtained integrating the proposed transform into the JPEG2000 codec show improvements in both visual and objective tests, allowing for a "better" representation of the edges at very-low rates. Very recently, some related ideas have been presented by other authors. The most distinctive features of this paper include a more flexible packet wavelet decomposition structure and a comparison between subband- and image-domain shifting operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time Gesture Recognition in Advanced Videocommunication Services Corner Displacement from Motion Blur A Method of Clustering Combination Applied to Satellite Image Analysis Sight enhancement through video fusion in a surveillance system Robust Iris Localization and Tracking based on Constrained Visual Fitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1