Wajahat Akbar, Muhammad Inam Ul Haq, A. Soomro, Sher Muhammad Daudpota, Ali Shariq Imran, M. Ullah
{"title":"自动报告生成:基于GRU的胸部x光检查方法","authors":"Wajahat Akbar, Muhammad Inam Ul Haq, A. Soomro, Sher Muhammad Daudpota, Ali Shariq Imran, M. Ullah","doi":"10.1109/iCoMET57998.2023.10099311","DOIUrl":null,"url":null,"abstract":"Radiology reports are the primary medium through which physicians communicate with patients and share diagnoses from medical scans. Examples include radiology reports for chest X-Rays and CT scans. Chest X-Ray images are frequently employed in clinical screening and diagnosis. However, writing medical reports for the X-Ray is tedious, error-prone, and time-consuming, even for experienced radiologists. The modern world of clinical practice demands that a radiologist with specialized training manually evaluate chest X-Ray and report the findings. Therefore, this paper explores the ability of artificial intelligence (AI) to automate diagnosing diseases through chest X-Rays and accurately generate radiology reports to alleviate the burdens of medical doctors. Automating this manual process could streamline a clinical workflow, and healthcare quality could be improved. The conventional AI-based abstract methods provide fluent but clinically incorrect radiology reports. The proposed Gated Recurrent Unit (GRU) based model provides both stan-dard language generation and clinical coherence. The model is evaluated on the Indiana University dataset with commonly-used metrics BLEU and ROUGE-L. Empirical evaluations illustrate that the proposed approach can make more precise diagnoses and generate more fluent and precise reports than existing baselines.","PeriodicalId":369792,"journal":{"name":"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Report Generation: A GRU Based Method for Chest X-Rays\",\"authors\":\"Wajahat Akbar, Muhammad Inam Ul Haq, A. Soomro, Sher Muhammad Daudpota, Ali Shariq Imran, M. Ullah\",\"doi\":\"10.1109/iCoMET57998.2023.10099311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiology reports are the primary medium through which physicians communicate with patients and share diagnoses from medical scans. Examples include radiology reports for chest X-Rays and CT scans. Chest X-Ray images are frequently employed in clinical screening and diagnosis. However, writing medical reports for the X-Ray is tedious, error-prone, and time-consuming, even for experienced radiologists. The modern world of clinical practice demands that a radiologist with specialized training manually evaluate chest X-Ray and report the findings. Therefore, this paper explores the ability of artificial intelligence (AI) to automate diagnosing diseases through chest X-Rays and accurately generate radiology reports to alleviate the burdens of medical doctors. Automating this manual process could streamline a clinical workflow, and healthcare quality could be improved. The conventional AI-based abstract methods provide fluent but clinically incorrect radiology reports. The proposed Gated Recurrent Unit (GRU) based model provides both stan-dard language generation and clinical coherence. The model is evaluated on the Indiana University dataset with commonly-used metrics BLEU and ROUGE-L. Empirical evaluations illustrate that the proposed approach can make more precise diagnoses and generate more fluent and precise reports than existing baselines.\",\"PeriodicalId\":369792,\"journal\":{\"name\":\"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iCoMET57998.2023.10099311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCoMET57998.2023.10099311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Report Generation: A GRU Based Method for Chest X-Rays
Radiology reports are the primary medium through which physicians communicate with patients and share diagnoses from medical scans. Examples include radiology reports for chest X-Rays and CT scans. Chest X-Ray images are frequently employed in clinical screening and diagnosis. However, writing medical reports for the X-Ray is tedious, error-prone, and time-consuming, even for experienced radiologists. The modern world of clinical practice demands that a radiologist with specialized training manually evaluate chest X-Ray and report the findings. Therefore, this paper explores the ability of artificial intelligence (AI) to automate diagnosing diseases through chest X-Rays and accurately generate radiology reports to alleviate the burdens of medical doctors. Automating this manual process could streamline a clinical workflow, and healthcare quality could be improved. The conventional AI-based abstract methods provide fluent but clinically incorrect radiology reports. The proposed Gated Recurrent Unit (GRU) based model provides both stan-dard language generation and clinical coherence. The model is evaluated on the Indiana University dataset with commonly-used metrics BLEU and ROUGE-L. Empirical evaluations illustrate that the proposed approach can make more precise diagnoses and generate more fluent and precise reports than existing baselines.