精度变量匿名化方法支持透光计算

K. Harada, H. Charles, H. Nishi
{"title":"精度变量匿名化方法支持透光计算","authors":"K. Harada, H. Charles, H. Nishi","doi":"10.23919/ICACT48636.2020.9061512","DOIUrl":null,"url":null,"abstract":"Recently, the number of Internet of Things (IoT) sensors has been increasing rapidly; hence, various data are gathered. As a secondary use of the data, they are useful in providing new services, such as the demand response service in the Smart Grid. However, data services cause several problems in preserving privacy and during computation. This study focuses on these two significant problems. First, the invasion of privacy while using the data to provide such new services is problematic. A lot of private information is available in the data. For example, power consumption data may reveal the lifestyle of the residents, and the technique of obtaining information is known as nonintrusive load monitoring. Second, the penetration of IoT devices and sensors increases the computational and communicating energy consumption for processing the data and for providing various services using the data. In this paper, a new method is proposed to solve these two problems. This method is based on the fact that the anonymization process reduces the amount of information itself, as well as the quantity of computational resources required. This leads to a trade-off between anonymization level and computational cost. For example, raw data have a maximum amount of information and maximum computational cost. In contrast, fully generalized data (all zero data) have minimum amount of information and minimum computational cost. Compared to the conventional method, the proposed method demonstrated lower precision and a higher error rate. Therefore, the proposed method aims to control the trade-off and enables the provision of anonymized data with less information, the required anonymity level, and low computational cost compared to the conventional method. The proposed method is practiced using power consumption data gathered from the Urban Design Center Misiono (UDCMi) and the demand response service is evaluated as an experiment using the data. In this evaluation, a simple model of energy consumption was used in the calculation, which uses the required bit width of the arithmetic logic unit (ALU) for providing the service. The computational efficiency of the proposed method was increased by 60% when k = 2 and by 65% when k = 3, 4, 5, 6 compared to the conventional method. The method can also maintain an acceptable range of service error. The transprecision platform can restrict energy consumption by reducing the bit width of the data. Therefore, the proposed anonymization method can also reduce energy consumption by achieving lower usage of the ALU based on the transprecision architecture.","PeriodicalId":296763,"journal":{"name":"2020 22nd International Conference on Advanced Communication Technology (ICACT)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision variable anonymization method supporting transprecision computing\",\"authors\":\"K. Harada, H. Charles, H. Nishi\",\"doi\":\"10.23919/ICACT48636.2020.9061512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the number of Internet of Things (IoT) sensors has been increasing rapidly; hence, various data are gathered. As a secondary use of the data, they are useful in providing new services, such as the demand response service in the Smart Grid. However, data services cause several problems in preserving privacy and during computation. This study focuses on these two significant problems. First, the invasion of privacy while using the data to provide such new services is problematic. A lot of private information is available in the data. For example, power consumption data may reveal the lifestyle of the residents, and the technique of obtaining information is known as nonintrusive load monitoring. Second, the penetration of IoT devices and sensors increases the computational and communicating energy consumption for processing the data and for providing various services using the data. In this paper, a new method is proposed to solve these two problems. This method is based on the fact that the anonymization process reduces the amount of information itself, as well as the quantity of computational resources required. This leads to a trade-off between anonymization level and computational cost. For example, raw data have a maximum amount of information and maximum computational cost. In contrast, fully generalized data (all zero data) have minimum amount of information and minimum computational cost. Compared to the conventional method, the proposed method demonstrated lower precision and a higher error rate. Therefore, the proposed method aims to control the trade-off and enables the provision of anonymized data with less information, the required anonymity level, and low computational cost compared to the conventional method. The proposed method is practiced using power consumption data gathered from the Urban Design Center Misiono (UDCMi) and the demand response service is evaluated as an experiment using the data. In this evaluation, a simple model of energy consumption was used in the calculation, which uses the required bit width of the arithmetic logic unit (ALU) for providing the service. The computational efficiency of the proposed method was increased by 60% when k = 2 and by 65% when k = 3, 4, 5, 6 compared to the conventional method. The method can also maintain an acceptable range of service error. The transprecision platform can restrict energy consumption by reducing the bit width of the data. Therefore, the proposed anonymization method can also reduce energy consumption by achieving lower usage of the ALU based on the transprecision architecture.\",\"PeriodicalId\":296763,\"journal\":{\"name\":\"2020 22nd International Conference on Advanced Communication Technology (ICACT)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 22nd International Conference on Advanced Communication Technology (ICACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICACT48636.2020.9061512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT48636.2020.9061512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,物联网(IoT)传感器的数量迅速增加;因此,收集了各种数据。作为数据的二次使用,它们在提供新服务时很有用,例如智能电网中的需求响应服务。然而,数据服务在保护隐私和计算过程中引起了一些问题。本研究主要关注这两个重要问题。首先,在使用这些数据提供这种新服务时侵犯隐私是有问题的。数据中包含了大量的私人信息。例如,电力消耗数据可以揭示居民的生活方式,获取信息的技术被称为非侵入式负荷监测。其次,物联网设备和传感器的渗透增加了处理数据和使用数据提供各种服务的计算和通信能耗。本文提出了一种新的方法来解决这两个问题。这种方法是基于这样一个事实,即匿名化过程减少了信息量本身,以及所需的计算资源的数量。这导致了匿名化水平和计算成本之间的权衡。例如,原始数据具有最大的信息量和最大的计算成本。相比之下,完全广义数据(全部为零数据)具有最小的信息量和最小的计算成本。与传统方法相比,该方法精度较低,错误率较高。因此,与传统方法相比,该方法旨在控制权衡,以更少的信息、所需的匿名级别和较低的计算成本提供匿名数据。所提出的方法使用从城市设计中心任务(UDCMi)收集的功耗数据进行实践,并使用该数据评估需求响应服务作为实验。在此评估中,在计算中使用了一个简单的能耗模型,该模型使用算术逻辑单元(ALU)提供服务所需的位宽度。当k = 2时,该方法的计算效率比传统方法提高了60%,当k = 3,4,5,6时,该方法的计算效率比传统方法提高了65%。该方法还可以保持可接受的服务误差范围。该透光平台可以通过减小数据的位宽来限制能耗。因此,本文提出的匿名化方法还可以通过实现基于透读架构的低ALU使用率来降低能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precision variable anonymization method supporting transprecision computing
Recently, the number of Internet of Things (IoT) sensors has been increasing rapidly; hence, various data are gathered. As a secondary use of the data, they are useful in providing new services, such as the demand response service in the Smart Grid. However, data services cause several problems in preserving privacy and during computation. This study focuses on these two significant problems. First, the invasion of privacy while using the data to provide such new services is problematic. A lot of private information is available in the data. For example, power consumption data may reveal the lifestyle of the residents, and the technique of obtaining information is known as nonintrusive load monitoring. Second, the penetration of IoT devices and sensors increases the computational and communicating energy consumption for processing the data and for providing various services using the data. In this paper, a new method is proposed to solve these two problems. This method is based on the fact that the anonymization process reduces the amount of information itself, as well as the quantity of computational resources required. This leads to a trade-off between anonymization level and computational cost. For example, raw data have a maximum amount of information and maximum computational cost. In contrast, fully generalized data (all zero data) have minimum amount of information and minimum computational cost. Compared to the conventional method, the proposed method demonstrated lower precision and a higher error rate. Therefore, the proposed method aims to control the trade-off and enables the provision of anonymized data with less information, the required anonymity level, and low computational cost compared to the conventional method. The proposed method is practiced using power consumption data gathered from the Urban Design Center Misiono (UDCMi) and the demand response service is evaluated as an experiment using the data. In this evaluation, a simple model of energy consumption was used in the calculation, which uses the required bit width of the arithmetic logic unit (ALU) for providing the service. The computational efficiency of the proposed method was increased by 60% when k = 2 and by 65% when k = 3, 4, 5, 6 compared to the conventional method. The method can also maintain an acceptable range of service error. The transprecision platform can restrict energy consumption by reducing the bit width of the data. Therefore, the proposed anonymization method can also reduce energy consumption by achieving lower usage of the ALU based on the transprecision architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classify and Analyze the Security Issues and Challenges in Mobile banking in Uzbekistan 2 to 4 Digital Optical Line Decoder based on Photonic Micro-Ring Resonators Session Overview Analysis and Protection of Computer Network Security Issues Preliminary Study of the Voice-controlled Electric Heat Radiator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1