使用语音后图模板进行按例查询的口语术语检测

Timothy J. Hazen, Wade Shen, Christopher M. White
{"title":"使用语音后图模板进行按例查询的口语术语检测","authors":"Timothy J. Hazen, Wade Shen, Christopher M. White","doi":"10.1109/ASRU.2009.5372889","DOIUrl":null,"url":null,"abstract":"This paper examines a query-by-example approach to spoken term detection in audio files. The approach is designed for low-resource situations in which limited or no in-domain training material is available and accurate word-based speech recognition capability is unavailable. Instead of using word or phone strings as search terms, the user presents the system with audio snippets of desired search terms to act as the queries. Query and test materials are represented using phonetic posteriorgrams obtained from a phonetic recognition system. Query matches in the test data are located using a modified dynamic time warping search between query templates and test utterances. Experiments using this approach are presented using data from the Fisher corpus.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"300","resultStr":"{\"title\":\"Query-by-example spoken term detection using phonetic posteriorgram templates\",\"authors\":\"Timothy J. Hazen, Wade Shen, Christopher M. White\",\"doi\":\"10.1109/ASRU.2009.5372889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines a query-by-example approach to spoken term detection in audio files. The approach is designed for low-resource situations in which limited or no in-domain training material is available and accurate word-based speech recognition capability is unavailable. Instead of using word or phone strings as search terms, the user presents the system with audio snippets of desired search terms to act as the queries. Query and test materials are represented using phonetic posteriorgrams obtained from a phonetic recognition system. Query matches in the test data are located using a modified dynamic time warping search between query templates and test utterances. Experiments using this approach are presented using data from the Fisher corpus.\",\"PeriodicalId\":292194,\"journal\":{\"name\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"300\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2009.5372889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5372889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 300

摘要

本文研究了一种基于实例的查询方法来检测音频文件中的口语术语。该方法是为资源匮乏的情况而设计的,在这种情况下,可用的域内培训材料有限或没有,并且无法获得准确的基于单词的语音识别能力。用户不使用单词或电话字符串作为搜索词,而是向系统提供所需搜索词的音频片段作为查询。使用从语音识别系统获得的语音后图来表示查询和测试材料。在查询模板和测试话语之间使用修改的动态时间扭曲搜索来定位测试数据中的查询匹配。本文用Fisher语料库中的数据进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Query-by-example spoken term detection using phonetic posteriorgram templates
This paper examines a query-by-example approach to spoken term detection in audio files. The approach is designed for low-resource situations in which limited or no in-domain training material is available and accurate word-based speech recognition capability is unavailable. Instead of using word or phone strings as search terms, the user presents the system with audio snippets of desired search terms to act as the queries. Query and test materials are represented using phonetic posteriorgrams obtained from a phonetic recognition system. Query matches in the test data are located using a modified dynamic time warping search between query templates and test utterances. Experiments using this approach are presented using data from the Fisher corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of OOV words by combining acoustic confidence measures with linguistic features Automatic translation from parallel speech: Simultaneous interpretation as MT training data Local and global models for spontaneous speech segment detection and characterization Automatic punctuation generation for speech Response timing generation and response type selection for a spontaneous spoken dialog system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1