基于神经网络的RSG-GAS反应器在线监测

K. Nabeshima, K. Kurniant, T. Surbakti, S. Pinem, M. Subekti, Y. Minakuchi, K. Kudo
{"title":"基于神经网络的RSG-GAS反应器在线监测","authors":"K. Nabeshima, K. Kurniant, T. Surbakti, S. Pinem, M. Subekti, Y. Minakuchi, K. Kudo","doi":"10.1109/CIMA.2005.1662354","DOIUrl":null,"url":null,"abstract":"The ANNOMA (artificial neural network of monitoring aids) system is applied to the condition monitoring and signal validation of multi purpose reactor (RSG-GAS) in Indonesia. The feedforward neural network in auto-associative mode learns reactor's normal operational data, and models the reactor dynamics during the initial learning. The basic principle of the anomaly detection is to monitor the deviation between the process signals measured from the actual reactor and the corresponding values predicted by the reactor model, i.e., the neural networks. The pattern of the deviation at each signal is utilized for the identification of anomaly, e.g. sensor failure or system fault. The on-line test results showed that the neural network successfully monitored the reactor status during power increasing and steady state operation in real-time","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On-line reactor monitoring with neural network for RSG-GAS\",\"authors\":\"K. Nabeshima, K. Kurniant, T. Surbakti, S. Pinem, M. Subekti, Y. Minakuchi, K. Kudo\",\"doi\":\"10.1109/CIMA.2005.1662354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ANNOMA (artificial neural network of monitoring aids) system is applied to the condition monitoring and signal validation of multi purpose reactor (RSG-GAS) in Indonesia. The feedforward neural network in auto-associative mode learns reactor's normal operational data, and models the reactor dynamics during the initial learning. The basic principle of the anomaly detection is to monitor the deviation between the process signals measured from the actual reactor and the corresponding values predicted by the reactor model, i.e., the neural networks. The pattern of the deviation at each signal is utilized for the identification of anomaly, e.g. sensor failure or system fault. The on-line test results showed that the neural network successfully monitored the reactor status during power increasing and steady state operation in real-time\",\"PeriodicalId\":306045,\"journal\":{\"name\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 ICSC Congress on Computational Intelligence Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMA.2005.1662354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

将人工神经网络监测辅助系统(ANNOMA)应用于印尼多用途反应堆(RSG-GAS)的状态监测和信号验证。采用自关联模式的前馈神经网络学习反应堆的正常运行数据,并在初始学习过程中对反应堆的动力学进行建模。异常检测的基本原理是监测实际反应釜测量到的过程信号与反应釜模型(即神经网络)预测的相应值之间的偏差。利用每个信号的偏差模式来识别异常,例如传感器故障或系统故障。在线试验结果表明,该神经网络能够实时监测电抗器在增功率和稳态运行过程中的状态
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-line reactor monitoring with neural network for RSG-GAS
The ANNOMA (artificial neural network of monitoring aids) system is applied to the condition monitoring and signal validation of multi purpose reactor (RSG-GAS) in Indonesia. The feedforward neural network in auto-associative mode learns reactor's normal operational data, and models the reactor dynamics during the initial learning. The basic principle of the anomaly detection is to monitor the deviation between the process signals measured from the actual reactor and the corresponding values predicted by the reactor model, i.e., the neural networks. The pattern of the deviation at each signal is utilized for the identification of anomaly, e.g. sensor failure or system fault. The on-line test results showed that the neural network successfully monitored the reactor status during power increasing and steady state operation in real-time
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparison of fuzzy, state space with direct eigenstructure assignment, and PID controller on linearized MIMO plant model Measurement of the cross-sectional contour of H-shaped steel using multiple stereo pairs Feature selection based on bootstrapping Eigenvector methods for automated detection of time-varying biomedical signals Animal toxins: what features differentiate pore blockers from gate modifiers?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1