基于大数据的银行客户集群

Jie Zheng, Hongyan Cui, Xiaoqiu Li, L. Meng, Tian Wang
{"title":"基于大数据的银行客户集群","authors":"Jie Zheng, Hongyan Cui, Xiaoqiu Li, L. Meng, Tian Wang","doi":"10.1109/UV.2018.8642136","DOIUrl":null,"url":null,"abstract":"Many technologies about data mining, such as clustering, have been widely applied in the context of bank to understand the behaviors of the clients and investors. Unlike some classic clustering validity index using compactness and separation, we employ Pairing Frequency Clustering Validity Index (PFCVI), which uses pairwise pattern information and focuses more on logical reasoning than geometrical features. We use PFCVI to evaluate the clustering quality under different c and find the optimal value of c is 11 based on the bank’s data, and clients in the 11 classes have different savings value potential levels and different fluctuation patterns. Then, we sum up the above 11 classes into 5 categories with different fluctuation patterns – stabilized savings value category, fluctuating savings value category, rising savings value category, falling savings value category and abnormal savings value category. Finally, we analyze each category with techniques like user profile and give some targeted advice for each category aimed at optimal market segment.","PeriodicalId":110658,"journal":{"name":"2018 4th International Conference on Universal Village (UV)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Clustering for Clients in a Bank Based on Big Data\",\"authors\":\"Jie Zheng, Hongyan Cui, Xiaoqiu Li, L. Meng, Tian Wang\",\"doi\":\"10.1109/UV.2018.8642136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many technologies about data mining, such as clustering, have been widely applied in the context of bank to understand the behaviors of the clients and investors. Unlike some classic clustering validity index using compactness and separation, we employ Pairing Frequency Clustering Validity Index (PFCVI), which uses pairwise pattern information and focuses more on logical reasoning than geometrical features. We use PFCVI to evaluate the clustering quality under different c and find the optimal value of c is 11 based on the bank’s data, and clients in the 11 classes have different savings value potential levels and different fluctuation patterns. Then, we sum up the above 11 classes into 5 categories with different fluctuation patterns – stabilized savings value category, fluctuating savings value category, rising savings value category, falling savings value category and abnormal savings value category. Finally, we analyze each category with techniques like user profile and give some targeted advice for each category aimed at optimal market segment.\",\"PeriodicalId\":110658,\"journal\":{\"name\":\"2018 4th International Conference on Universal Village (UV)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Universal Village (UV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UV.2018.8642136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV.2018.8642136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚类等数据挖掘技术已被广泛应用于银行环境中,以了解客户和投资者的行为。不同于一些经典的基于紧密性和分离性的聚类有效性指标,我们采用了配对频率聚类有效性指标(PFCVI),它使用成对模式信息,更注重逻辑推理而不是几何特征。我们使用PFCVI对不同c下的聚类质量进行评价,根据银行的数据得出c的最优值为11,11类客户具有不同的储蓄价值潜力水平和不同的波动模式。然后,我们将以上11类归纳为5类不同波动模式的储蓄价值稳定类、储蓄价值波动类、储蓄价值上升类、储蓄价值下降类和储蓄价值异常类。最后,我们使用用户配置文件等技术对每个类别进行分析,并针对每个类别给出一些针对最佳细分市场的针对性建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Clustering for Clients in a Bank Based on Big Data
Many technologies about data mining, such as clustering, have been widely applied in the context of bank to understand the behaviors of the clients and investors. Unlike some classic clustering validity index using compactness and separation, we employ Pairing Frequency Clustering Validity Index (PFCVI), which uses pairwise pattern information and focuses more on logical reasoning than geometrical features. We use PFCVI to evaluate the clustering quality under different c and find the optimal value of c is 11 based on the bank’s data, and clients in the 11 classes have different savings value potential levels and different fluctuation patterns. Then, we sum up the above 11 classes into 5 categories with different fluctuation patterns – stabilized savings value category, fluctuating savings value category, rising savings value category, falling savings value category and abnormal savings value category. Finally, we analyze each category with techniques like user profile and give some targeted advice for each category aimed at optimal market segment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Information Exchange: How Does It Affect Patient-Hospital Relationship? Adaptive Generalized Predictive Control Scheme for Single Phase GPV System Why Do We Need Bilateral Control? - In View Of Energy Consumption Autonomous Mobility and Energy Service Management in Future Smart Cities: An Overview Anonymous network communication based on SDN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1