M. Maragoudakis, E. Kavallieratou, N. Fakotakis, G. Kokkinakis
{"title":"条件独立假设如何影响手写字符分割","authors":"M. Maragoudakis, E. Kavallieratou, N. Fakotakis, G. Kokkinakis","doi":"10.1109/ICDAR.2001.953792","DOIUrl":null,"url":null,"abstract":"This paper deals with the use of Bayesian Belief Networks in order to improve the accuracy and training time of character segmentation for unconstrained handwritten text. Comparative experimental results have been evaluated against Naive Bayes classification, which is based on the assumption of the independence of the parameters and two additional previous commonly used methods. Results have depicted that obtaining the inferential dependencies of the training data, could lead to the reduction of the required training time and size by a factor of 55%. Moreover, the achieved accuracy in detecting segment boundaries exceeds 86% whereas limited training data are proved to endow with very satisfactory results.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"How conditional independence assumption affects handwritten character segmentation\",\"authors\":\"M. Maragoudakis, E. Kavallieratou, N. Fakotakis, G. Kokkinakis\",\"doi\":\"10.1109/ICDAR.2001.953792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the use of Bayesian Belief Networks in order to improve the accuracy and training time of character segmentation for unconstrained handwritten text. Comparative experimental results have been evaluated against Naive Bayes classification, which is based on the assumption of the independence of the parameters and two additional previous commonly used methods. Results have depicted that obtaining the inferential dependencies of the training data, could lead to the reduction of the required training time and size by a factor of 55%. Moreover, the achieved accuracy in detecting segment boundaries exceeds 86% whereas limited training data are proved to endow with very satisfactory results.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How conditional independence assumption affects handwritten character segmentation
This paper deals with the use of Bayesian Belief Networks in order to improve the accuracy and training time of character segmentation for unconstrained handwritten text. Comparative experimental results have been evaluated against Naive Bayes classification, which is based on the assumption of the independence of the parameters and two additional previous commonly used methods. Results have depicted that obtaining the inferential dependencies of the training data, could lead to the reduction of the required training time and size by a factor of 55%. Moreover, the achieved accuracy in detecting segment boundaries exceeds 86% whereas limited training data are proved to endow with very satisfactory results.