磁记录介质中的零场松弛测量

J. Harrell, S. Wang, S. Brown
{"title":"磁记录介质中的零场松弛测量","authors":"J. Harrell, S. Wang, S. Brown","doi":"10.1109/NAPMRC.2003.1177060","DOIUrl":null,"url":null,"abstract":"Thermal relaxation of the magnetization is a critical issue in ultra-high density recording media. The thermal stability is typically characterized by measuring the time dependence of the coercivity or by measuring the magnetization decay as a function of the reverse field after saturation. The relaxation is usually given in terms of a magnetic viscosity coefficient. The viscosity is usually greatest near the coercivity, and for large thermal stability factors, it is usually very small in zero applied field. We have recently reported zero field relaxation (ZFR) measurements in a variety of films, including longitudinal media, perpendicular media, and particulate films The measurements were made in zero field as a function of the initial remanent magnetization obtained after applying a saturation-reverse-zero field sequence.","PeriodicalId":111090,"journal":{"name":"Joint NAPMRC 2003. Digest of Technical Papers","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero field relaxation measurements in magnetic recording media\",\"authors\":\"J. Harrell, S. Wang, S. Brown\",\"doi\":\"10.1109/NAPMRC.2003.1177060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal relaxation of the magnetization is a critical issue in ultra-high density recording media. The thermal stability is typically characterized by measuring the time dependence of the coercivity or by measuring the magnetization decay as a function of the reverse field after saturation. The relaxation is usually given in terms of a magnetic viscosity coefficient. The viscosity is usually greatest near the coercivity, and for large thermal stability factors, it is usually very small in zero applied field. We have recently reported zero field relaxation (ZFR) measurements in a variety of films, including longitudinal media, perpendicular media, and particulate films The measurements were made in zero field as a function of the initial remanent magnetization obtained after applying a saturation-reverse-zero field sequence.\",\"PeriodicalId\":111090,\"journal\":{\"name\":\"Joint NAPMRC 2003. Digest of Technical Papers\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joint NAPMRC 2003. Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPMRC.2003.1177060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint NAPMRC 2003. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPMRC.2003.1177060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在超高密度记录介质中,磁化强度的热松弛是一个关键问题。热稳定性的典型特征是测量矫顽力的时间依赖性或测量磁化衰减作为饱和后反向场的函数。弛豫通常用磁黏度系数表示。黏度在矫顽力附近最大,热稳定系数较大时,在零场时黏度很小。我们最近报道了零场弛豫(ZFR)在各种薄膜中的测量,包括纵向介质、垂直介质和颗粒膜。测量结果是在零场中作为施加饱和反零场序列后获得的初始剩余磁化的函数进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zero field relaxation measurements in magnetic recording media
Thermal relaxation of the magnetization is a critical issue in ultra-high density recording media. The thermal stability is typically characterized by measuring the time dependence of the coercivity or by measuring the magnetization decay as a function of the reverse field after saturation. The relaxation is usually given in terms of a magnetic viscosity coefficient. The viscosity is usually greatest near the coercivity, and for large thermal stability factors, it is usually very small in zero applied field. We have recently reported zero field relaxation (ZFR) measurements in a variety of films, including longitudinal media, perpendicular media, and particulate films The measurements were made in zero field as a function of the initial remanent magnetization obtained after applying a saturation-reverse-zero field sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monolayer of closely packed FePt islands with a tetragonal L1/sub 0/ structure produced by thermally created mass transport High frequency inductance measurements and performance projections made for cusp-field single pole heads Resonant soft x-ray scattering from magnetic thin films CoCrPt-alloy perpendicular media for high-density magnetic recording Magnetic force microscopy measurements of skew angle dependencies in perpendicular media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1